
.l r

)TI
*1doELECTF1

IDEC I

~OF 4

THE DEVELOPMENT OF AN EXPERT SYSTEM
FOR SOFTWARE COST ESTIMATION

T HES I,

James L. Goodson. Major, USAF

AFIT/GLM%/LSM/90S-d2) 1

~ J~bxxued

DEPARTMENT OF THE 'AIR FORCE

AIR UNIVERSITY'

AJR FCRCE INSTITUTE' OF TECHNOLOGY,

WrgitPttrson Air Focrte Wase, Oh~io

90 12 10 ,~

AFIT/GLM/LSM/90S-2 1

Sam ILECTE F

D

THE DEVELOPMENT OF AN EXPERT SYSTEM
FOR SOFTWARE COST ESTIMATION

THESIS

James L. Goodson, Major, USAF

L AFlT/GLM/LSM/90S-2 1j

Approved for public release; distribution unlimited

The opinions and conclusions in this paper are those of the
author and are not intended to represent the official
position of the DOD, USAF, or any other government agency.

I,' T T,~

By

AFIT/GLM/LSM/90S-21

THE DEVELOPMENT OF AN EXPERT SYSTEM

FOR SOFTWARE COST ESTIMATION

THESIS

Presented to the Faculty of the School of Systems and Logistics

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science in Logistics Management

James L. Goodson, B.S., M.S.S.M.

Major, USAF

September 1990

Approved for public release; distribution unlimited

Trademark Acknowledge ments

Nexpert and Nexpert Object are trademarks of Neuron Data, Incorporated.

PRICE-S is a trademark of General Electric, Incorporated.

SEER is a trademark of Galorath Associates, Incorporated.

H1

Table of Contents

Page

Trademark Acknowledgments .. ii

List of Figures .. vi

List of Tables .. vii

List of equations ... viii

A b stract ... ix

I. Introduction I
Cost of Software Development....................... I
M anpow er ------. 2
S p e cific P ro b le m 2.. 2
Possible Solution ... 2
Investigative Questions 3. 3
S c o p e .. 3.. 3
Lim iting Factor ... 4... 4
Thesis Structure 4

II. Literature Review 5
O v e rv ie w 3.......... 5
Artificial Intelligence and Expert Systems 5
Software Engineering 10
Cost Estimation Models 10

Constructive Cost Model (COCOMO) 10
GE PRICE-S . .14

System Evaluation and Estimation of Resources Model (SEER) 16
Expert System Development Shell 17

Nexpert Object. 17

Ill. M e th o d o log y 2 0
O v e rv ie w 2 0
Research M ethodology 20
P h a s e I 2 0
P h a se I I 2......1. 2 1
P h a se III 2 2......... 2 2
P h a se IV ... 2..3........... 2 3
Test and Evaluation 23

ill

Page

IV. Results and Findings 26

Overview 26

PHASE I - Attempt to solve the problem yourself 26

Non-Automated Methods. 26

Automated Methods 28

Expert system shell selection 29

Question Preparation 30

Questioning the expert 30

PHASE II - Prepare translation of discussion to rules ... 31

PHASE III - Translate rules into computer code 32

PHASE IV - Operate system 3

Model Comparison 34

V. Conclusions, and Recommendations 36
Overview 36
Summary 36
Conclusions 36

Question 1 36
Question 2 37
Question 3 37
Question 4 38

Recommendations for Redesign 38
Further Research 39

Software Cost Estimation Decision Support System 39

Appendix A: Definitions 41

Appendix B: Selection Criteria for an Appropriate Domain
for an Expert System44

Appendix C: Expert Application Questionnaire
for Software Cost Estimation 51

Appendix D: Software Cost Exercise
for COST 676: Software Cost Estimation 55

Iv

Page

Appendix E: COCOMO Formulas and Effort Multipliers 65

h-o endix F: Expert Application Questionnaire
Responses 70

Appendix G: Expert System Rule Listing Nexpert Object.. 83

Bibliography 107

Vita 110

ListofFigures

Figure Page

1. Algorithmic Vs. Al Problem Solving 6

2. Components of An Expert System 7

3. Nexpert Object Oriented Rule-......... 32-

VI

Table Page

1. The Good and the Bad News for Artificial Expertise 8

2. Summary of Prerau's Criteria Relative to Software Cost Estimation 9

3. Detailed COCOMO Factors by Module and Subsystem 13

4. PRICE-S" Input Variables 15

5. Required Reliability (RELY) Rating Scale 27

6. PRICE-S Verses SEER 29

7. Comparison of Parametric and Expert System Models 37

v11

List of Equations

Table Page

1. O rg an ic M an m o n th 12

2 . O rg a n ic S ch e d u le 12

3. Sem i-Detached M an m onth ... 12

4. Semi-Detached Schedule 12

5. Embedded Manmonth 12

6. Embedded Schedule12

7. Adaptation Adjustm ent Factor (AAF) 65

8. Equivalent Delivered Source Instructions (EDSI) 65

9. Nominal Phase Distribution of Effort 66

vili

\ AFIT/GLM/LSM/90S-21

Abstract

"J

Software development has become an integral part of new weapon

system design as sophisticated computer operating and control systems have

proliferated. Concurrently, there has been an ever increasing requirement to

accurately forecast system development cost.

Experts use complicated software cost estimating tools which are difficult

for novice analysts to use. Expert system technology appears to be able to

bridge this gap.

Policy makers have become intrigued by the potential offered by the

development of expert systems in today's weapon systems for system

support and development and operational utility.

The primary objective of this thesis was to gather expert knowledge in

software cost estimation and integrate it with a powerful analytical software

cost estimation algorithm. A battery of questions where given to the experts

to elicit responses relative to their knowledge in software cost estimation.

Responses where integrated with algorithms with the detailed COCOMO cost

estimation model. ',

The expert system designed in this Fefearch provides software

developers, program managers, and cost analysts an easy mechanism for

determining software development costs. It provides an intelligent

preprocessor, numeric algorithms and an intelligent post processor in one

tool. The expert system can help the novice make accurate estimates and
/

speed the process for experts. /,

ix

THE DEVELOPMENT OF AN EXPERT SYSTEM FOR
SOFTWARE COST ESTIMATION

1. Introduction

Cost of Software Development

The Air Force faces a large reduction in defense spending. Concurrent

with that reduction is a continued requirement for the development of new

weapon systems to replace aging and hard to maintain older systems. A

major portion of the cost for these acquisitions, estimated to be $25 billion

for fiscal year 1990, is computer software development (Ferens, 1990.vii).

As technology advances, policy makers have become intrigued by the

potential offered by the development of Artificial Intelligence (A) in today's

weapon systems both for its operational utility and for system support and

development (Valusek, 1990). The application of Expert System technology,

a subset of Al, is of particular interest in its application in the estimation of

software development costs.

Man~ower

Budget reductions dictate that sacrifices be made in all areas of

management inr jding manpower. With the reduction in manpower and the

potential exodus of qualified personnel, "experts", out of the service, new

methods must be developed to ensure that novices will be able to make

expert decisions on problems in which they have tittle or no expertise. In

his preface to the student in his book Software Eniineerin_ Economics. Barry

W. Boehm cites the following concern:

There is a good chance that, within a few years, you will find your-
self together in a room with a group of people who will be deciding
how much time and money you should get to do a significant new
software job. Perhaps one or two of the people in the room will know
software well, but most of them will not.

(Boehm, 1981 :xxxiii)

Specific Problem

With the present level of expertise diminishing in the Air Force, it is now

incumbent on people with limited training in cost estimationlike engineers

and logisticians, to do software cost analysis. Present software estimation

models rely on extensive training and/or experience to use them effectively.

The models all require the user to have a clear understanding of the lexicon

of software cost estimation in addition to those terms that are specific to the

model in use (McMurry and Nelson, 1990:2-11). A method is needed to

capture expert software cost estimation knowledge before it is lost.

Possible Solution

Expert system technology has been applied in many fields including

inventory management (Allen, 1989), medical diagnosis, and the

troubleshooting of malfunctions in mechanical and electronic systems (Hicks,

1988:5-10). Additionally, expert systems have been created to provide

problem solving guidance in managing budgets, cost estimation, monitoring

local area networks, and advising emergency response teams (Nexpert

Partners, 1989:2). Given that expert systems have been built using similar

problem solving logic as software cost estimation, it seems realistic to

assume that a rule-based system using cognitive decision making criteria can

be of significant benefit to the analysis and the definition of software cost

estimation. This thesis will analyze how software cost estimation is

2

presently being done, how to acquire software cost estimation expert

knowledge, develop an expert system to aid program managers in the

acquisition of new software and upgrades to existing software and compare

the expert system to current methods. Better estimates could reduce

software development costs, manpower, and decrease the time it takes to

place a new effort on contract.

Investigative Questions

The following questions will be investigated to support the thesis

objectives stated in the above paragraph:

1. What knowledge and heuristics, rules of thumb, do software cost
analysts use in decision making?

2. Can this knowledge and these heuristics can be captured and pro-
grammed as an "expert system."

3. Do expert system significantly improve the performance of
software cost analysts.

4. Can the use of expert systems allow cost analysts to solve complex or
difficult problems more efficiently?

The following factors define the scope of this research effort:

1. The cost models selected for comparison to the expert system under

development were chosen for their general acceptance Air Force wide and

their present use in the Advanced Tactical Fighter System Program Office.

2. The selection of the expert system shell was predicated on its

availability, its compatibility with a Macintosh computer system, and its

transportability to other C based, object oriented computer systems.

3. Each cost model and the expert system will be exercised using the

same case study to ensure a product baseline for comparison.

3

4. Validation of the expert system will be done on case files provided by

the ATF SPO if they can be released to the researcher.

5. At least one expert from a system program office and one from

outside the Aeronautical Systems Division will be interviewed to preclude

the potential of institutional ideas being integrated into the expert system

data base.

Limiting Factor

Only non-proprietary, public domain, algorithms will be used in the

development of this cost estimation expert system.
Thesis Structure

Chapter one identifies the purpose and direction of this effort. Chapter II

covers the background, history, a review of parametric cost estimating

models, and a review of the expert shell that is used for the development of

this system. Chapter III identifies the method for solving the problem and

the method for evaluation and validation of the proposed expert system.

Chapter IV contains research results. Chapter V makes further conclusions

and recommendations.

4

II. Literature Review

Overview

This chapter contains a review of the literature and the background and

history of expert system development. It also covers software cost

economics, the software cost estimating models used in this research, and a

review of expert system software cost estimation.

Artificial Intelligence and Expert Systems

Artificial intelligence (AI) is defined as, "The study of how to make

computers do things that previously only people could do (Valusek, 1990)."

Or in other words, AI programs into the computer the cognitive decision

making processes that are an inherent part of the human manipulation of

knowledge. Al is represented by the following terms: heuristics or rules of

thumb; natural or human language processing; advanced robotics; object

oriented programming; symbolic computation; and expert systems (ES) to

name a few (Valusek, 1990 and Ferens, 1990a:19-5).

Artificial intelligence, and expert systems in particular, are difficult

entities to understand and use. The following figure will help place

perspective on how Al compares with the algorithmic approach of

programming and problem solving. Note that in Al systems there is a

recognition that an optimal or best solution may not be possible and that a

satisfactory solution is all that is required.

5

ALGORITHMIC APPROACH

AGRTMPOSSIBLE SLTO PIU

Al APPROACH

VERY _ SOLUTION SATIS-
HUITC PROMISING -*,'EVALUATION FACTORY
C SOLUTIONS SOLUTION

Valusek. 1990

Figure 1. Algorithmic Vs. Al Problem Solving.

An expert system is a computer program that exploits expert knowledge,

solves difficult problems, and uses understandable reasoning procedures. It

must provide to the user a high degree of expertise, predictive modeling

power, a storehouse of expert knowledge, and a tutoring facility (Valusek,

1990). Douglas Waterman goes on to say that an ES must have:

Expertise - Exhibit expert performance
- A high level of skill
- Have adequate robustness

Symbolic Reasoning - Represent knowledge symbolically
- Reformulate symbolic knowledge

Depth - Handle difficult problem domains
- Use complex rules

Self-knowledge - Examine its own reasoning
- Explain its operation

(Waterman, 1986:25)

6

Expert system are made of six basic components with interfaces for

system and knowledge design, and for the integration of end user

requirements. The six components as depicted in Figure 6 are: the

knowledge base where rules and facts reside, the inference engine which

defines the search and control mechanisms, a knowlodgo acquisition

subsystem that provides the tools for knowledge integration, an explanation

subsystem that provides the how and why of particular operations and

functions, a working memory, and a user interface.

KNOWLEDGE BASE WORKING
RULES FACTS MEMORY

• llKNOWLEDGE EXPLANATION USER

ACQUISITION SUBSYSTEM INTERFACE
SUBSYSTEM

I

EXPIRT OR USER
KNOWLEDGE

ENGINEER Valusek. 1990

Figure 2. Components of An Expert System

These components form an integrated unit each interacting with the other.

Before building an expert system one must evaluate whether the benefits

to be gained from the effort outweigh the problems that are an intrinsic part

of developing any new technology. Holt and Valusek identify a variety of

7

benefits and cautions that are an intrinsic part of using expert systems for

problem solving and decision aiding. They compare human expertise to

artificial expertise and identify the good and bad of each.

Table I

The Good and the Bad News for Artificial Expertise
(Holt, 1990 and Valusek, 1990)

The Good News for Artificial Expertise

Human Eigertise Artificial Extertise

- Perishable - Permanent
- Difficult to transfer - Easy to transfer
- Difficult to document - Easy to document
- Unpredictable - Consistent
- Expensive - Affordable

The Bad News for Artificial Exoertise

- Creative - Uninspired (Systematic)
- Adaptive - Needs to be told
- Sensory experience - Symbolic input
- Broad focus - Narrow focus
- Common sense knowledge - Technical knowledge

Expert systems are complex in their design and implementation.

Managers must weigh the complexities of ES design and the benefits that can

be derived from their use. Problems selected for expert system application

should warrant the time, effort, and expense required for its development.

David S. Prerau defined a set of criteria (Prerau, 1985:26-30) to test the

appropriateness for expert system implementation. This lengthy criteria is

in appendix B and is reviewed to see how software cost estimation fares as a

candidate for expert system development. Table 3 summarizes the results.

8

Table 2

Summary of Prerau's Criteria Relative to Software
Cost Estimation

(See Appendix B)

BASIC REQUIRME

The domain is characterized by the use of expert knowledge, judgment, and
experience.

Conventional programming approaches to the task are not satisfactory.
There are recognized Experts that solve the problem today.
There is a need to capture the expertise.

TYPE OF PROBLEM
The task requires the use of heuristics, e.g., rules of thumb, strategies, etc.
The task is defined very clearly.

There exists an expert to work with the project.
The expert has built up expertise over a long period.
The expert is capable of communicating his knovledgeand experience.
The expert is cooperative and easy to work with.

PROBLEM BOUNDS

The problem is neither too easy nor too difficult.
The task is sufficiently narrow and self-contained.
The number of important concepts required is bound to several hundreds.

DOMAIN AREA PERSONNEL
Personnel in the domain area are realistic.
Domain area personnel understand the system will be limited in scope.
Potential users would welcome the completed system.

OTR DEIRABLE FEATURES
The task is decomposable, allowing relatively rapid prototyping.
The skill required by the task is taught to novices.
Test cases are available.
The domain is fairly stable.
The user interface will not require extensive effort

Douglas Waterman identified five areas for which a candidate system or

knowledge area should be evaluated when considering the development of

an expert system. He tests to see if the knowledge area in question, is a
Irealistic' candidate (that the knowledge is volatile and the problem

persistent), is 'justified' by its payoff in savings of resources and other

9

environmental factors, and has experts or 'expertise' that can be emulated

by the expert system. He continues by testing to see if it has 'tasks' that are

manageable, uses heuristics that are well understood, and satisfies 'other'

criteria relative to cognitive operations inherent in expert decision making

processes (Waterman, 1986:127-134). His assertion that an expert sytstem

must meet these five criteria parallels the recommendations made by Prerau

as listed in appendix B.

Software Engineerin

The software cost tools used in this study are described as top down

parametric models. Top down implys that the software costs are calculated

based on "design characteristics or parameters of a software program." The

cost is computed for the entire system or computer software configuration

item (CSCI) and then partitioned down to lower levels or development

phases (Ferens, 1990a:10-3). In all cases the algorithms and equations used

in the models are developed through regression analysis. The data bases are

derived by correlating the historical data of several systems to performance

characteristics of those same systems (Project. 1988:2).

Cost Estimation Models

The following models form the basis of comparison for evaluating the

expert system under development in this study. They were selected due to

their wide acceptance among users in industry and the Air Force and that

they have been validated as effective in software cost estimation (Ferens,

1990a).

Constructive Cost Model (COCOMO)

To apply expert systems to software cost analysis it is important to have

an understanding of how this analysis is done. Barry W. Boehm discusses

10

this topic extensively in his book Software En~ineerinR Economics. He

describes the history of software cost economics, its impact on effective

program management, and a cost estimation tool called COCOMO, or

COnstructive COst MOdel (BOEHM, 1981 :xx). COCOMO is a series of three

models, basic, intermediate, and detailed whose use is dependent upon the

complexity or level of detail required to accomplish an effective evaluation.

The basic COCOMO is used when the analyst needs a rough order of

magnitude estimate but has few factors available to make his estimate. The

intermediate COCOMO includes factors in terms of their aggregate impact' on

overall project cost. The rules and algorithms in the detailed COCOMO model

describes the relationship between factors used in making the cost estimate

and the influence those factors have on the project's development phases

(Boehm, 1981:58).

The first factor for the software cost estimator to consider is the

development mode of his project. The modes, organic, semi-detached, and

embedded, are predicated by the level of integration and the complexity the

system is being designed. Software projects in a stable environment with a

minimal need for creative architectures or algorithms, a low premium on

early completion, and is of small size (50 thousand lines delivered source

instructions (KDSI) or less) are called organic. A semi-detached mode has

some or all of the organic mode in addition to larger size (up to 300 KDSI)

and more rigid compliance with requirements and specifications. The

embedded mode is the most rigorous by far in that it is quite large, user

requirements are potentially volatile, and the effects of software failure

could be catastrophic to equipment or human life (Boehm, 1981:78-80). The

equations listed below are used to compute the man-months of effort and

the schedule time it takes for that effort. The analyst reviews the software

11

proposal and finds the estimated delivered source Instructions for each

software module or subystem. If, for example, he finds that a module is

estimated to contain 10,000 lines of code and that the development effort is

embedded, he can compute the man-months of effort and the development

time by using equations 5 and 6. In this case, (MM)NOM - 2.8(00)1.20 - 44.37

man-months of effort. Development time can be approximated by inserting

the man-months of effort from equation 5 into equation 6: TDEV -

2.5(44.37)0.32 - 8.4 calender months. See appendix E for other equations that

are used in addition to these (Boehm, 1981:353).

Organic (MM)NOM - 3.2(KDSI)1.05 (1)
TDEV - 2.5(MM)DEVO. 38 (2)

Semi-Detached (MM)NoM - 3.0(KDSI)1.12 (3)
TDEV - 2.5(MM)DEVO. 35 (4)

Embedded (MM)NOM - 2.8(KDSI)1.20 (5)
TDEV - 2.5(MM)DEV0.32 (6)

where,
(MM)NOM is man-months nominal,
KDSI is thousand of delivered source instructions,
TDEV is development schedule.
(MM)DEV is development time in man-months.

Most of the Air Force's software development projects are described as

embedded due to their complexity, integration requirements, and rigid

controls for their development.

In addition to development mode, Boehm defines four factors, product,

computer, personnel, project, with fifteen subordinate attributes that the

cost estimator must analyze and quantify. Unlike the basic and intermediate

COCOMO models discussed earlier, the embedded mode is used to evaluate

12

the factors in much finer detail by breaking the effort into modules and

subsystems (see Table 3).

COCOMO rates each attribute on a continuum from very low to very high

which changes as a function of the level of project development (see

appendix E). The levele of development are: roquiremont. analyaie and

preliminary design (RPD), detailed design (DD), code and unit test (CUT), and

component integration and test (IT). Notice that Boehm does not consider a

formal test for the entire effort which would occur after IT.

Table 3

Detailed COCOMO Factors by Module and Subsystem
(Boehm, 1981: 371-474)

Module Level Effort Multioliers

CPLX Software product complexity
PCAP* Programmer capability
VEXP- Virtual machine experience
LEXP Programming language experience

Subsystem Level Effort Multioliers
Product

RELY Required software reliability
DATA Data Base Size

TIME Execution time constraint
STOR Main storage constraint
VIRT Virtual machine volatility
TURN Computer turnaround time

Personnel
ACAP" Analyst capability
AEXP* Applications experience

Project

MODP Use of modern programming practices
TOOL Use of software tools
SCED Development schedule constraint

*Attributes that fall under Personnel factors.

13

Boehm also recommended a set of criteria that are advantageous to use in

evaluating the different models for their utility in estimating software

development cost (Boehm, 1981: 476). These criteria provide a qualitative

continuum for comparing the different models and give the manager a

mechanism for selecting the best or optimal model to use considering his

application. The criteria are discussed in chapter three.

GERIC". PRICE-S" is a commercially available parametric cost model

that was originally developed by Dr. Robert Park of RCA PRICE systems. It is

a proprietary model in that all of the algorithms, data, and instruction sets

are the property of General Electric. As a consequence, the software cannot

be bought per se, but can be leased. The limitations of this proprietary

relationship for the user are cost for the lease, training, and the inability to

modify the instruction set to fit unique requirements (Ferens, 1990c).

PRICE-S" provides life cycle cost analysis of the system design,

programming, data, system engineering and program management, quality

assurance, and configuration management. It provides these costs relative to

the program development phase from system concept, preliminary design,

detailed design, system test and evaluation, to operational test and

evaluation. It also provides a system level development schedule with

adjustments made for program acceleration, stretch-out, and phase

transition inefficiencies (PRICE, 1989: 1- 1). A more extensive discussion on

input and output will be provided in chapters three and four of this paper.

Unlike COCOMO which has fifteen factors plus source lines of code for

input variables, PRICE-S" groups its inputs into seven fundamental

categories (see table 4). The model is designed to be easily calibrated to fit

programmatic changes plus tests the credibility and consistency of input

data which helps to minimize input of faulty information (PRICE, 1989:1-8)."

14

Table 4

PRICE-S'" Input Variables
(PRICE-S, 1989:1-8)

1. Project Magnitude (How big?)
The amount of code to be produced.

2. Program Application (What Character?)
The type of project such as MIS, Communications, Telemetry, etc.

3. Level of New Design and Code (How much new work is needed?)
The amount of new design and code that cannot be taken from the
existing inventory.

4. Productivity (Who will do the work?)
The experience, skill, and know-how of the assigned individuals or
team, as applicable to the specified task.

5. Utilization (What hardware constraints?)
The extent of processor loading relative to its speed and memory
capacity.

6. Customer Specification and Pcliability Requirements
(Where and how used?)
The level of reqiuirements relating to testing, transportability, and
end use of the product.

7. Development Environment (What complicating factors exist?)
The relative impact of unique project conditions on the normal
time required to complete the job, measured with respect to the
organization, resources, program application and project size.

PRICE-S" covers all of the factors that are entered into the COCOMO

model. It is however, much more robust in its ability to evaluate each of

these attributes in much finer detail. As an example, COCOMO does not

consider the language except under the area of personnel experience.

PRICE-S' not only looks at personnel aspects but evaluates twenty-four

different language types that have different developmental values (PRICE,

1989: 2-E-10). This fineness of detail applies to all attributes and conditions.

15

PRICE-S" is one of the first commercial software tools that provides an

expert interface. Its strengths lie in its consideration of multiple factors to a

much greater degree than COCOMO and its inclusion of a software sizing and

life cycle analysis capability. PRICE-S' weaknesses are its difficulty to learn

and to maintain proficiency. There is no PC version of PRICE-S'" which

requires the user to have an expensive lease to a remote processing center.

Lastly, it has proven to be inaccurate in ground based avionics applications

(Ferens, 1990c).

System Evaluation and Estimation of Resources Model (SEER). This model

is another proprietary commercial program similar in nature to PRICE-S'.

This PC based software package is one of the most powerful software cost

estimating systems on the market. It is designed to evaluate software cost

for the entire life cycle of the system or it can be modified to provide os'i, g

for selected phases (McMurry and Nelson, 1990: 2).

SEER' is unique in that it requires one hundred and fifty-seven inputs to

perform its analysis. Its primary input categories identified on the SEER-

SEM Early Estimate Worksheet (SEER", 1988:iws- In), are platform.

application, development method, and development standards. These four

categories are broken down further into forty-eight sub categories to

provide the finest detail of the three tool. It elicits inputs for complexity,

personnel capabilities, development support environment, product

development requirements, reusability requirements, development

environment complexity, target environment, schedule, staffing, probability,

software requirements analysis, software to software integration, software to

hardware integration, and software maintenance. It also has the ability to

provide seventeen different reports with analysis of cost, schedule, detailed

monthly expenditures and input relationships (SEER, 1988:11 -1).

16

SEER'g" strength lie in its many inputs and features. It uses program

evaluation and resource tracking (PERT) methodology for all input, addresses

different life cycle models, and complies closely with DoD-STD-2167A

defense system software development terminology. Its weaknesses lie in its

cost to lease, its difficulty to learn, and its complexity to run (Ferens, 1990c).

Expert System Development Shell

Expert system shells are the framework from which the expert system is

built. They provide the integrated mechanism for managing the rules and

facts of the knowledge base, the inference and control strategy, and the

knowledge acquisition subsystem (Holt, 1990a).

Nexoert Object"u. Nexpert Object' is an object oriented expert system

development tool. This tool creates an object base consisting of classes,

subclasses, objects, subobjects, and properties. to represent the problem

domain (Rasmus, 1989:145). If all aircraft were the class, then they would

have wings, tails, and other structural items in common. Aircraft can be

broken down into subclasses of fighters, bombers, and cargo, etc. A fighter

can be classified as the object, F-16. The F-16 can be further broken down

into subobjects, such as model types, with each of the models having

properties that describe them down to the finest detail. During the inference

process, the class and object property values are tied to control mechanisms

called meta-slots (Rasmus, 1989:145). "The meta-slots determine how the

property will affect or behave in relation to the inference mechanism as well

as the inference display" (Nexpert Object', 1989:G- 11). In other words, the

object A-7 Fighter Aircraft, would, when entered into the system, inherit all

of the properties of the class 'aircraft', and the subobject 'fighters'.

There are basically three types of inference engines used in expert shells.

Forward chaining inference engines evaluate data as it is entered. The

17

engine searches for rules that the data satisfies and as the rules 'fire' new

conclusions are arrived at until the system is driven to the final conclusion

(Rasmus, 1989:139). Backward Chaining is an inference method where the

system starts with what it wants to prove, e.g., Z, and tries to establish the

facts it needs to prove Z (Waterman, 1986:77). Nexpert Object' is a hybrid

of the two systems which allows it to closer approximate the reasoning

processes of the human expert (Rasmus, 1989:139). Nexpert's" inference

processor allows it to create dynamic objects by adding a DO command to its

IF/Then rule structure. The dynamic object can inherit all of the attributes

and properties of the classes and subobjects it is linked to.

The inference strategy that will be used for the development of this

system will be an Unconditionally Forward Hypothesis that allows

propagation of whatever value of the initial hypothesis. Forward action

effects and exhaustive evaluation will be used to further refine the levels of

agenda control. Forward action effects are invoked when the firing of a rule

results in modification of the value of any element of the knowledge base

(KB). Exhaustive Evaluation is used because some hypotheses have more

than one rule leading to them (such as the case when building two rules to

build an OR operator)(Nexpert, 1989:Chap 4).

Using the above strategy for the development of the software cost

estimation expert system, a way must be developed for creating classes of

objects using software subsystems, modules, and modes. The purpose is to

investigate the class modules, and pass on that information to the subsystem

(inherit). Objects will be created within Nexpert" to represent the individual

subsystems and modules. They in turn will inherit the individual values

from the users input and those created through data manipulation by the

program (Nexpert, 1989:Chap 4). Objects can be created and inherit

18

properties based on the class which holds the ideal object or the template for

the system.

19

I I1I. Methodolggy

Overview

This chapter discusses the methodology underlying the development of

this thesis. Included are discussions on the methodology used, the system

design, and the evaluation and validation of the conceptualized model.

Research Methodology

The research methodology follows a knowledge engineering outline (Holt,

1990) which breaks the development of an expert system into four phases:

Phase I is an attempt to solve the problem in a conventional manner without

the aid of an expert; phase I I entails translating the problem into meaningful

statements or rules and includes interface with the system expert; phase III

begins the translation of the expert's input into computer code; phase IV

begins full operational use of the system. The following outline, states

actions and questions for the entire methodological process.

PHASE T

Attemot to solve the problem yourself - Investigate present software cost

estimation procedures to include non-automated processes and computer

assisted processes. Attention to the factors involved in making the cost

estimation and to the validity of the models under analysis is necessary.

Gain experience with expert system development. Experiment with

different types of expert shells with particular attention in comparing

standard shells with object oriented shells.

Preoare guestions for the exgerts. - Prepare a battery of questions for

use in interrogating software cost estimation experts. The questions will be

exploratory in nature that elicit a response other than yes or no. The

20

questions will be general enough to focus the experts attention on the areas

of concern, but structured to handle several levels of detail. The question's

structure will provide enough flexibility for use in interrogating experts of

different backgrounds and varying degrees of experience.

Question the experts. - Software estimating experts are required to

provide common, verifiable, consistent, reliable answers to the questions

needed by the users of this system. They will be interrogated with a series

of qdestions that elicit responses necessary to aid the expert system user in

focusing on the correct inputs for his problem. A questionnaire has been

developed to ensure consistency of responses from one expert to the next

(see Appendix C). The experts will be asked to provide data or advice they

feels is salient to software cost analysis. A written set of the questions will

be provided to the experts so they can refer to them as the interview

progresses. The interview will be structured to handle several levels of

detail with an emphasis on differentiating between important factors. If

responses are made based on a position in a continuum, the experts will be

asked how or why they arrived at that decision. The interview will be

structured around an "If /Then" structure to allow for easier translation of

the expert responses into ES rules.

PHASE II

Preoare translation of discussion to rules. Meaningful variables and

common english terms will be used when possible. Rule networking will

facilitate tracing of dependencies and inherited characteristics. Identify

gaps, dead ends, holes. Rules will be cross referenced to the questions to

ensure all variables identified by the expert are included.

Try to understand translation. Ensure translation maintains intent of

the expert's input. An attempt will be made to understand the reasoning

21

behind the expert's responses. Why did he say that? What are the driving

factors? Think about gaps, dead ends, holes.

Forward rules to expert. Be prepared for negative feedback. Alow

experts the opportunity to evaluate their responses to prevent inclusion of

interrogator biases into the rule base.

Interview exoert again. Re-evaluate rules with experts once all changes

have been integrated into the expert system. Try to understand their new

position if changes are made in their responses. Clarify gaps, dead ends,

holes, and mis-rules.

PHASE III
Translate rules into computer code. Code the software to accomplish the

software cost estimation evaluations. To be effective, the expert system will

be coded to:

- Be flexible enough for use by both novices and experts alike.

- Be able to update/change files.

- Be able to provide on-line help when needed.

- Be capable of report generation.

The user interface will be coded to include as many of the guidelines derived

from the interrogation of the expert and augmented with active cues for on

screen help. Use expert system transcript to ensure code traceability and

documentation of changes. Document mismatches and personal additions.

Enter comouter code into system. Integrate rules and algorithms into

expert system knowledge base. Document reasons for rules. Develop formal

tree of relationships.

Exoert System Design The design of this system will be based on the

integration of the software cost estimation algorithms identified in the

22

detailed COCOMO model (Boehm, 1981:347). with expert insight into cost

estimation attributes. The integrating tool for this effort is Nexpert Object-

expert system development shell. This shell, as discussed in chapter I,

provides the knowledge engineer the ability to identify major classes that

have particular attributes that can be passed on to other sub-classes. The

purpose is to evaluate the class and pass on that information to the

subsystem (inherit). Individual subsystems and modules will be created

through the create object function within Nexpert (dynamic object) which

will pass the inherited values of the individual attributes from the users

input and that created through data manipulation by the program (Nexpert,

1989:Chap 4). Test system to ensure fundamental requirements are

functional.

Test with expert. Allow the expert to exercise the system with variety

of different cases. Try to break the system with borderline cases and then

consider new rules to clarify and expand the system's capability. Make

changes as required and integrate into knowledge base.

PHASE IV

OQerate system. Develop system for the novice user. Interface will be

developed to facilitate ease of use by personnel with limited experience.

Test using actual field case proposals and compare to historical results.

Document mismatches and mistakes for future correction and modification.

Test and Evaluation

The bottom line of this software development effort is proving that the

system will do what it is designed to do. Boehm discusses software

verification and validation (V&V) and depicts it as spanning the entire

software development life-cycle (Boehm, 1981:36).

23

Verilica 'on: To establish the truth of correspondence between
a software product and its specification (from the latin veritas,
"truth").
Valfdation: To establish the fitness or worth of a software product

for its operational mission (from the latin valere, "to be worth").

In other words is the expert system appropriate for the task it has been

designed for and is it being built correctly?

To verify the effectiveness of the software cost estimating expert system

being built, it must be compared to already existing models that have proven

track records. Consequently, the two models discussed in chapter II, PRICE-

S" and SEER", will be exercised using the same input variables and then

comparisons made among them to ensure they are consistent in their output.

To do this, a case study (Ferens, 1990) ,written for the IMGT 676, Software

Cost Estimation Class (Appendix E), will be used to provide a baseline of

information the models will be tasked to evaluate. Once all the data has

been evaluated by the standard parametric models, the data will be

analyzed by the expert system.

The above process verifies the ability of ES to accomplish the

mathematical operations required to provide the output appropriate to the

tasking. There is, however, one other test that must occur before the new

model is completely verified. The model must be used by a variety of users,

with different capabilities, to verify that it does indeed provide expert

advice and then give consistent results.

The expert system model will be provided to engineers, cost analysts, and

middle managers to see if it facilitates the analysis of software proposals and

provide predictable results as a function of that aiding. In order to do this,

actual software acquisition case files will be used to exercise the system and

the users. The results of the prior runs and the ES run will be compared to

24

see if there are any discrepancies between the case file results and those

provided by the ES. Evaluations will be made to ensure discrepancies

identified belong in one of two categories, expert system or human error.

Identified faults in the software they will be repaired and the data

reentered. If human error is determined, then both the person and the

software will be evaluated to ascertain if the software could have prevented

the error by providing better expert advice.

A realistic goal for any software system is the practicality or benefit the

user can derive out of its use. Boehm identified a series of questions that are

a test of the practicality of software systems. Each of the models used in this

effort will be compared to see how the new expert system fares against this

criteria.

I. Definitio," - 7:.s the model clearly defined the costs it is estimating?

2. Fidel'ty - Are the estimates close to the actual costs expended?

3. Objectivity - Does the model avoid allocating most of the cost to
subjective factors?

4. Constructiveness - Can the user tell why the model gives the estimate
it does?

5. Detail - Does the model consider the number of subsystems, units, and
phases?

6. Stability - Do small differences in input provide small differences in
output?

7. Scope - Does the model cover all classes of software you wish to
estimate?

8. Ease of use - Are the inputs and options easy to understand?

9. Prospectiveness - Does the model avoid the use of unknown data?

10. Parsimony - Does the model avoid redundant or unnecessary factors?
(Boehm, 1981:476)

25

IV. Results and Findins

Overview

This chapter presents the results of the research, an analysis of the

expert interviews, a comparison of the models used, and a discussion of the

findings.

PHASE I - Attempt to solve the problem yourself

Non-Automated Methods. To solve problems in software cost estimation,

one must look at the mechanisms presently used today. Automated models,

such as PRICE-S and SEER, which will be discussed in following paragraphs,

use proprietary rules and algorithms that have been developed and proven

over time. Independent of these models are the non-proprietary algorithms

that define the computational structure of the COCOMO model (see

Appendix E).

Boehm developed a Software Hierarchy Estimating Form (SHEF) to

facilitate computation of software cost (Boehm, 1981:348-353). It is

necessary when using this form to go through a rigorous twenty-five step

procedure to compute eve simple software cost problems. Knowledge of the

formulas identified in Appendix E was essential as was an understanding of

the qualitative descriptions of each of the attributes. To compute the

solution, the evaluator must interpret the software proposal and evaluate

each of the fifteen attributes relative to the description provided. He must

designate the stage of development, specify if the factor is at the subsystem

or module level, and then assign a rating predicated on this subjective

evaluation. Each of the attributes has its own continuum which the user

must be experienced with to assign the appropriate rating. An example of

one of the fifteen rating scales is given in Table 5.

26

Table 5

Required Reliability (RELY) Rating Scale
(Boehm, 1981: 374)

Very Low The effect of software failure is simply the inconvenience
incumbent on the developers to fix the fault.

Low The effect of software failure is a low level, easily
recoverable loss to the users.

Nominal The effect of a software failure is a moderate loss to the
users, but a situation which one can recover without extreme
penalty.

High The effect of a software failure can be a major financial loss
or a massive human inconvenience.

Very High The effect of a software failure can be loss of human life.

Each of the fifteen attributes has a table similar to this that the evaluator

must interpret. The more experience he has in doing this, obviously the

better. Once a rating and the phase of development has been identified, the

actual quantified rating is assigned and integrated into the algorithms so the

SHEF computations can be performed. Some of the tables, like the execution

time (TIME) constraint, are easy to evaluate and assign a rating. Others, like

system complexity (CPLX), are much more difficult to understand and

consequently more difficult to assign an accurate rating.

Boehm provides an example problem for students to test their skills in

computing software cost (Boehm, 1981: 341-352). The system under

evaluation consisted of three subsystems made of six modules total. Even

though this is a relatively simple problem, the computational requirements

were extremely high. Computations at the module level were done first and

required the assignment of 56 ratings similar to those found in Table 5.

Once those values were assigned, no less than 151 computations had to be

27

done to complete the form at the module level. The next step was to

complete the analysis at the subsystem level which required 60 lookups for

rating assignment and 91 mathematical operations to complete the form.

The grand total for this effort was 116 lookups from tables and 241

mathematical operations. Needless to say the potential for error was great.

In the final analysis, hand computation using the SHEF form or any other

non-automated spreadsheet is cumbersome at best. This analysis places a

good deal of responsibility on the user in understanding the terms,

manipulation of the algorithms, and selecting the appropriate ratings for the

attributes. However, because it is spreadsheet in design one could easily

build a Lotus type template to accomplish the task. It would not solve the

major problem though of providing insight to the user of how to assign the

ratings.

Automated Methods. The two automated software cost estimating models

identified in Chapter II, PRICE-S and SEER, were evaluated using the Cost

676 case study (Appendix D). The case study was used to provide a baseline

for comparison of the above models by ensuring each was tested using the

same environmental, personnel, project, and computer attributes. Consistent

among both models was their overall difficulty to use and their complexity

of design (Goodson and Pshsynchyniak, 1990:13; McMurry and Nelson,

1990:9). A comparison and evaluation of the practicality of these models is

made at the end of this chapter.

The overall benefit of models of this type are the consistency of results

for similar systems evaluated and the fine level of detail they evaluate to

ensure as accurate a computation as possible. A comparison of the results of

PRICE-S'" and SEER is provided below in Table 6. A significant factor to

note is the significant difference between the two models in their cost

28

estimations. Mr. Dan Ferens offered the following insight that not all models

evalLate cost in the same fashion. The primary inputs for PRICE-S is man

months and the primary for SEER is source lines of code. The important

issue is that your model is consistent when compared to historical data from

your particular program.

Table 6

PRICE-S Verses SEER
(Goodson and Pshsynchyniak, 1990:8;

McMurry and Nelson, 1990:13)

Arcturus VAa Polux
PRICES
Development $35.6 $47.5 $57.8
Support 26 25.8 45.1
Total 62.3 73.3 102.9

Development $.104 $.097 $.091
Support .23 .230 .451
Total .387 .327 .542

Cost in Millions

Additionally, as more data is gathered and the data base expanded, the

easier it will be to calibrate the models to fit specific applications or

contractors. Calibration will tend to bring both models closer to similar

answers.

Expert system shell selection. The original criteria for ES shell selection

was that the system be compatible with a Macintosh computer and that it

have a certain degree of transportability to other systems. Nexpert Object"

was available and fit the above requi. ements.

29

Ouestion Preoaration. A series of questions were developed (Appendix C)

that reflected the basic design structure of the Detailed COCOMO cost

estimation model. The questions were structured in a way to handle as

much detail about the problem as possible, but made generic enough as to

not lead the interviewee to a specific answer. Additionally, there were

questions aside from those specific to COCOMO included to ensure that any

important variables were not overlooked.

Questioning the exgert Each of the interviewee's was provided a set of

the questions to ensure he could follow the interview without distraction.

Having the questions in hand, in addition to be asked, allowed the expert to

better internalize the problem area and reflect on alternative solutions. Due

to problems in coordinating schedules with the experts they were also given

the questions ahead of time which allowed them the luxury of reviewing

them before the interview.

One outcome to the interrogation was the experts perceiving their

problem domain as essentially "not expert". Their expertise was applied in

the analyses of the contractors proposal and not in the determination of

software cost effort multipliers. This position however inconsistent with

what was expected, still provided expert insight into the problem domain

but from another equally viable perspective. If difficulties arose in

determination of the cost factors, they would simply look in the users

manual for assistance in making that decision. Indeed, if the problem was

more difficult than the manual could provide an answer for, they would call

the support contractor, for that particular model, and get a best estimate

from them.

The end result of the interviews was limited insight into the problem

domain other than using the manuals and books as guidance in determining

30

cost estimation attributes. The individuals expert insight, compounded with

the data bases and studies in Boehm's book provide sufficient expert

knowledge though to build the expert system.

PHASE II - Prepare translation of discussion to rules.

Probably the most challenging aspect of this expert system was creation

of the rules and knowledge base from information provided in the expert

analysis. The rules were first written in a non-machine pseudo code which

allowed for a general mapping and understanding of the problem domain.

During the development of the preliminary code it was necessary to discuss

gain an understanding of how the ES shell woulu manipulate the information

in order to arrive at the predefined goals. Nexpert' required an

understanding of object oriented programming, that without formal prior

knowledge, was difficult to understand. The shell's architecture provided a

good explanation facility that allowed programming to begin wiLhout much

delay.

Once the pseudo code was complete, conversion to Nexpert' object

oriented code was made. Even though the syntax of the code was somewhat

esoteric, every attempt was made to make the variables as meaningful as

possible. By doing this it allowed for easier tracing for fault detection and

debugging. The following rule is an example of the rules developed for this

system (see figure 3). The purpose of this rule is to assign values which will

be used in computing the phase development schedule. In this case the user

provides an input in response to a computer query on whether the

subsystem development schedule is 'stretched out' or 'normal'. If it is

stretched out then the class subsystem with the property of schedule is set

to high. Each of the values is assigned to the different algorithms used to

compute the individual phase schedules. In this rule the class Isubsystem

31

has a property called Sced or schedule. The first sub-class, <iSubsysteml>,

has a property called Scedpd which stands for the schedule for preliminary

development. Once the action is confirmed, the value of 1. 1 is assigned to

the algorithm containing this variable. All objects that use this variable will

inherit that value from this one action. Each of the other values are similarly

assigned to properties. See Appendix G for a complete listing of the rule

base.

If
ISUBSYSTEMI.Sced is "Stretched out development schedule"

Then Action 100
is confirmed
And 1. 1 is assigned to <[Subsystem>.Scedpd
And 1. 1 is assigned to <dSubsysteml>.Sceddd
And 1.0 is assigned to <Subsysteml>.Scedcut
And 1.0 is assigned to (ISubsysteml>.Scedit
And <Subsysteml>.Sced rating is set to "High"

Figure 3. Nexpert" Object Oriep*ed Rule

PHASE I I I - Translate rules into computer code.

One of the convenient advantages of Nexpert ' is once you have written

your rules, you have basically written your computer code. There is no

requirement to convert the rules to a code of any lesser degree than the

object oriented code which is an inherent part of Nexpert's' structure. To

ensure complete traceability of the designed system, Nexpert" provided the

capability of reviewing the rules base, the knowledge base, the transcript,

and all objects with their classes and properties. A complete object network

allowed for a visual representation of the system as a final check of the

interrelationships of the objects, their properties and the hypothesis that

control them.

32

The inference strategy used for the development of this system an

unconditionally forward hypothesis that allowed propagation of whatever

value of the initial hypothesis. Forward action effects and exhaustive

evaluation were also used to further refine the levels of agenda control.

Forward action effects are invoked when the firing of a rule resulted in

modification of the value of any element of the knowledge base (KB) such as

shown in table 7. Exhaustive evaluation was used because some hypotheses

had more than one rule leading to them.

During the development of this system the ES shell exhibited a large

number of faults or bugs. Because of this an upgrade was made to the

software that allowed for greater fault isolation and improved user interface.

The negative part of this upgrade was to make the previously developed

software cost estimating system partially incompatible with the new

software. Because of the lack of time to resurrect the software, tests with

software cost analysts were not possible.

PHASE IV - Operate system.

An attempt was made to reconfigure the ES to the new software

configuration in order to have novice cost estimators test the system. To

effect that goal a multilayered user interface was to be integrated into the

system using the standard Hypercard' T information organizer. However,

due to the software upgrade problems cited in Phase Ill and the lack of time

to recode the system, this was not possible.

Despite the problems with the software there is little doubt that given

time, a viable interface and powerful software cost estimating tool could be

developed. As the system was exercised using program office case files, it

could be calibrated to the programmatic environment of the system program

offices at ASD.

33

Model Comarison

Boehm identifies ten criteria (Boehm, 1981:520-523) for evaluating a

software cost model for practical estimation utility. Each of the models used

in this study have been evaluated against this criteria in order to obtain an

understanding of the usefulness of the expert system. The ratings for

PRICE-S are synthesized from the study done by Goodson and -shsynchyniak

while the ratings for SEER where derived from the McMurry and Nelson

report. See Table 8.

Table 7
Comparison of Parametric and Expert System Models

Definition - Has the model clearly defined the costs it is estimating?
PRICE-S Good
SEER Good
ES Good

Fidelity - Are the estimates close to the actual costs expended?
PRICE-S Good
SEER Fair
ES TBD

Objectivity - Does the model avoid allocating most of the cost to subjective factors?
PRICE-S Good
SEER Fair
ES Poor

Constructiveness - Can the user tell why the model gives the estimate it does?
PRICE-S Fair
SEER Fair
ES Good

Dtail - Does the model consider the number of subsystems, units, and phases?
PRICE-S Good
SEER Good
ES Fair

Stability - Do small differences in input provide small differences in output?
PRICE-S Good
SEER Good
ES Fair

34

Table 7
Comparison of Parametric and Expert System Models

(continued)

Scope - Does the model cover all classes of software you wish to estimate?
PRICE-S Fair
SEER Fair
ES Fair

Ease of use - Are the inputs and options easy to understand?
PRICE-S Poor
SEER Poor
ES Good

Prospectiveness - Does the model avoid the use of unknown data?
PRICE-S Good
SEER Good
ES Good

Parsimony - Does the model avoid redundant or unnecessary factors?
PRICE-S Poor
SEER Poor
FS Good

To gain a numerical comparison of the models, each of the ratings was

assigned a value. Good was rated as a three, fair rated a two, and poor rated

one point. When these values are tallied PRICE-S rates the highest with

twenty-four total points or an average of 2.4. Even though the expert

system received no points for Fidelity due to lack of data, it tied in overall

points with SEER' with a rating of 22 and an average of 2.2. This rating

tends to show that the ES, despite the design weaknesses identified earlier,

has the potential for being competitive with the larger more expensive

systems.

35

V. Conclusions. and Recommendations

This chapter summarizes the research objective, methodology, and

findings, emphasizing conclusions about the effort, making recommendations

for further use of methodology, and suggesting further research.

Sumwar
The purpose of this study was to develop a software cost estimating

expert system. A series of questions were given to software development

personnel who have exhibited expertise in ascertaining software

development cost. Their answers were evaluated and transformed into an

expert system capable of aiding cost analysts of differing degrees of

experience.

This study met with limited success. There was a general recognition that

experts do use expert knowledge in the evaluation of software development

proposals. They tend, however, to rely strongly on the software cost

estimation models to make their decisions as opposed to adding their own

expertise.

Conclusions

The following paragraphs provide a discussion on the study results

relative to the research questions.

Question 1: What knowledge and heuristics, rules of thumb. do software

cost analysts use in decision making? The expert's knowledge about the

problem domain is derived from formal training in cost estimation

techniques and from their experiences in Air Force cost analysis centers.

The knowledge is focused on interpreting software development proposals

36

and on the manipulation of a variety of parametric cost estimation tools.

They augmented their expert knowledge by using the cost model manuals

and directives, like DoD-Std-2167A. The transformation of that knowledge

into values or data that could be used in a standard parametric models was

further aided by the model's basic menu driven help screens and contractor

assistance when required. The experts felt their experience tied with the

integration of guidance from many sources allowed them to effectively

analyze the contractor's proposal to ascertain the appropriate inputs for the

models.

One heuristic used consistently by the experts was to rate all software

systems as 'embedded'. Other heuristics were identified as situationally

dependent and difficult to qualify during the expert interviews.

Ouestion 2: Can this knowledge and these heuristics can be captured and

grogrammed as an "expert system?" The insight and knowledge from the

experts was valuable in selecting the appropriate rules and algorithms for

building the expert system. The information of greatest importance in

programming the ES was how to ascertain the appropriate rating for a given

software cost estimation attribute. This information allowed for the ES to be

programmed to a level that novice cost estimators could use the system and

not have to go to other sources for clarification or guidance.

Question3: Do expert system significantly improve the performance of

software cost analysts? This question was not satisfactorily answered by

this research. The general feeling among the software cost experts who were

interviewed was that it would have a significant impact on improving

performance. Their position was based on the feeling that too much time

was spent by cost analysts in figuring out the eccentricities of the different

estimation models. The use of an effective interface to provide the guidance

37

and insight to the user would allow them to spend more time in evaluating

the proposals and less on interpreting the demands of the cost tools. The

consensus was that expert systems would be beneficial in the evaluation of

proposals and enhance the cost analyst's capability to more accurately

estimate program development, support, and maintenance costs and thereby

better program for future budgetary requirements.

Question 4: Can the use of exoert systems allow cost analysts to solve

complex or difficult problems more efficiently? One of the major concerns of

the experts who were interviewed was the difficulty in using the present

methods of cost estimation. This concern is confirmed in this study in the

comparison of the two parametric models and how difficult it was to use

them for even simple problems. This study did not, however, show that the

ES could improve efficiency given a complex cost estimation problem.

Similar to question three above, again it was felt that this type of system

could improve efficiency by providing the cost estimation decision maker

with the tool and information necessary to make sound decisions.

Recommendations for Redesign

The following measures of system effectiveness offer the potential for

further research and system redesign.

- Productivity measure. Presently there is no mechanism built into the

system to capture the results of past decisions and provide them to the user

as a guide for future decision making (calibration of the algorithms).

- Process Measure. The system requires better integration of the

analytical tools and needs to expand on its alternative generation capability

which will provide a better problem analysis.

- Perception Measure. Needs better support of the judgments the user

must make. Additionally, within the scrollable screens there is no aiding to

38

the user on how to assess the value of certain parameters. The reasoning

process is also poorly supported which may lead the user to wonder on the

decisions validity.

In addition to the above items, the following would be beneficial to users

of all experience levels in improving system utility.

- Create a running log or transcript that the user can dump to the screen

or printer so he can audit his actions if required.

- Provide "hot spots" in the scrollable fields that will take the user to

supporting fields, such as graphs, charts, and tables.

- Create a model dictionary that will allow the user to bring in array of

different models or parameter changes to existing models to make better

decisions.

Further Research

Managers are not lacking in the availability of data or models to

manipulate their data. What they do lack is a way to integrate the data and

the models into a coherent system in support of decision making.

Software Cost Estimation Decision Suoort System

A DSS, unlike the expert system created in this study, would have to

integrate not just one model, but two or more. For this effort there are three

areas that require modeling. They are software cost estimation, contractor

performance evaluation, and schedule development.

The cost estimation model must be capable of determining the

capabilities of the contractor's software development team, hardware

requirements in support of the software, and any constraints that are

inherent in the design. Additionally, life cycle support and maintenance

costs need to be determined and if possible, provide a schedule for

development and delivery of the product.

39

The contractor performance model should have the capability of

providing the decision maker aid in determining the contractor(s) technical

performance relative to the descriptions provided in the contractor's

proposal.

The schedule development model should have the ability to provide

insight to the user for determination of the software development schedule.

At a minimum it must include the DOD-STD-2167A development cycle and a

schedule of all tests, design reviews, and audits.

40

Agoendix A: Definitions

Algorithm - A formal procedure guaranteed to produce correct or optimal
solutions (Waterman, 1986:22).

Artificial Intelligence (AI) - The field of computer science concerned with
developing computer systems that exhibit characteristics of human
intelligence associated with tasks as learning, problem solving, pattern
recognition, and reasoning (Young, 1989:343).

Backward Chaining - An inference method where the system starts with
what it wants to prove, e.g., Z, and tries to establish the facts it needs to
prove Z (Waterman, 1986:77).

Class - Collection of objects; functionally a generalization since the properties
of the class are found in its instance or objects (Nexpert Object,T' 1989:
G-2).

Create Object - Operator which allows rules, Order of sources, or If Change
slots to create new object entities, and link them to one or several classes
or to other dynamically created objects. The Create Object operator can
also establish new links between existing objects and classes defined in
the knowledge base (Nexpert Object", 1989:G-3).

Domain - A topical area or region of knowledge (Stepanek, 1988:D-2).

Dynamic Objects - Objects which are created either by rules, Meta-Slots or by
an external call (Nexpert Object"', 1989:G-5).

Exhaustive Evaluation - Inference strategy setting indicating that all rules
pointing to the current hypothesis must be evaluated (Nexpert Object',
1989:G-5).

Exhaustive Search - A problem-solving technique in which the problem
solver systematically tries all possible solutions in some "brute force"
manner until it finds an acceptable one (Waterman, 1986:151).

Expert System (ES) - "a computer program using expert knowledge to attain
high levels of performance in a narrow problem area" (Waterman,

41

1986:11). A heavily symbolic computer program which possesses a
separate declarative knowledge base and inference engine, and which is
generally implemented using ES tools, technology, and Ljn ,j". -

(Stepanek, I 988:D-2).

Explanation Facility - That part of an expert system that exnr,'.'a how
solutions were reached and justifies the steps used to reach them
(Waterman, 1986:30).

Forward Confirmed Hypothesis - A strategy setting allowing context propagation
if the source hypothesis is true (Nexpert Object"'. 1989:G-6).

Heuristic - A "rule of thumb" which, while not specifically accurate, may
narrow down the range of possible solutions to the problem
(Stepanek, 1 988:D-3).

Inference Chain - The sequence of steps or rule applications used by a rule-
based system to reach a conclusion (Waterman, 1986:78).

Inference Engine - That part of a knowledge-based system or expert system
that contains the general problem-solving knowledge (Waterman,
1986:22).

Inheritance - The ability to transfer values and functions declared in an object
or a class to other objects and/or classes related to them. The relationships
are parent/child relationships. In Nexpert', objects can inherit properties
and their values as well as functions (methods) from their classes (which
are more generalized structures). The reverse is also possible. Inheritance
in Nexpert" can be completely use-defined for every property of an object
or a class using the Meta-Slot structures (Nexpert Object', 1989:G-7).

Inheritance Hierarchy - A structure in a semantic net or frame system that
permits items lower in the net to inherit properties from items higher in
the net (Waterman, 1986:78).

Knowledge Base - The section of the ES code which contains the domain and
problem solving knowledge (Stepanek, 1 988:D-3).

42

Metaknowledge - Knowledge in an expert system about how the system
operates or reasons. More generally, knowledge about knowledge
(Waterman, 1986:30).

Meta-Slots - System properties of a given property of either an object or a class.
They determine how this property will affect or behave in relation to the
inference mechanisms as well as the Interface disolay (NexDert ObJect.
1989:G- 1).

Object - This refers to physical or conceptual entities that have many
attributes (Stepanek, 1988:D-4).

Parametric Model - A regression based model that relates estimated costs
directly to parameters that describe the design, performance, schedule or
operating environment to known or similar systems (Ferens, 1990c).

Rule - A formal way of specifying a recommendation, directive, or strategy,
expressed as IF premise THEN conclusion or IF oadiion THEN action
(Waterman, 1986:23).

Semantic Net - A knowledge representation method consisting of a network of
nodes standing for concepts or objects connected by arcs describing the
relations between nodes (Waterman, 1986:78).

Symbolic Reasoning - Problem solving based on the application of strategies and
heuristics to manipulate symbols standing for problem concepts
(Waterman, 1986:31).

43

Aoendix B: Selection Criteria for an Appropriate Domain
for an Expert System

(Al Magazine, 1985:26-30)

Prerau's criteria as quoted from The Al Magazine, are in quotes, the
effect they have on software cost estimation follow.

BASIC REQUIREMENTS

- "The domain is characterized by the use of expert knowledge, judgment,
and experience." The purpose is to use experiential information derived from
an expert in software economics and apply to this program.

- "Conventional programming (algorithmic) approaches to the task are not
satisfactory." "If a conventional approach will work well, there is usually less
technical risk to using it rather than an expert system approach (Allen, 1989)."
In the case of software cost estimating, there are many spreadsheet type
programs available to do the nuts and bolts type of number manipulation. They
do not, however, provide adequate insight to the novice cost estimator on how
to weigh the factors and parameters necessary for optimum analysis of the data.

"There are recognized Experts that solve the problem today." Experts do
exist in the Air Force accounting and contracting community who analyze data
of this type (Brill, 1989). Historically though, the AFSC product divisions utilize
support contractors who are used to do software cost estimating.

- "Expertise is not or will not be available on a reliable and continuing
basis, i.e., there is a nee- to capture the expertise." Given the major cuts in
today's budget there has been a drive to reduce reliance on support contractors
and to reduce manpower overall throughout the Department of Defense. By
capturing the expertise required we are ensuring the capability of program
managers to accurately forecast software cost with the use of an expert systems
and personnel who have limited experience in software cost estimation.

- "The complete system is expected to have a significant payoff for the
corporation." Payoffs can be realized by reductions in manpower, reduced times
in negotiating contracts, and better discrimination of cost overruns.

- "Among possible application domains, the domain selected is that one
that best meets overall project goals regarding project payoff versus risk of
failure." The reaching of a satisfactory solution for software cost estimating

44

must be balanced equally with the risk of failing to do so and effecting program
schedules.

TYPE OF PROBLEM

- "The task primarily requires symbolic reasoning." There is little doubt
that the basis of software cost estimating is. uantifiably based. The re-
quiremert Is to provide the cost estimator w.th dlscrete reasonlng prompts that
will elicit a response similar to one provided by an expert.

- 'The task requires the use of heuristics, e.g., rules of thumb, strategies,
etc. It may require consideration of an extremely large number of possibilities
or it may require decisions to be based upon incomplete or uncertain infor-
mation." The application of heuristics is essential in that we can begin to bring
in the human elements of guessing, testing for possibilities, and entering into
the equation what is commonly called "a gut feeling."

- "The system development has as its goal either to develop a system for
actual use or to make major advances in the state of the art of expert system
technology, but does not attempt to achieve both of these goals simultaneously."
Ideally, once this system is fielded and tested, it will become a viable tool for
anyone wishing to apply it in the software cost estimating domain.

- "The task is defined very clearly: At the project outset, there should be a
precise definition of the inputs and outputs of the system to be developed."
This part of the process is evolutionary in nature and should grow as the system
develops (Allen, 1989:207). As the system manifests itself and is tested, or
the environment changes, or any other intervening causes a change in
development, the task parameters must be flexible enough to ensure ease of
maintenance of the program.

THE EXPERT
- "There exists an expert to work with the project." It is these experts who

will provide the heuristics, the decision rules, and the correct analysis of the
program outcomes.

- 'The expert's knowledge and reputation must be such that if the expert
system is able to capture a portion of the expert's expertise, the system's output
will have credibility and authority." New technology, of which expert systems
are a member, suffer the bane of inertia. People dislike %ew, better ways of

45

doing things, consequently the resistance to change can be great. An expert
developer who has already established himself in this arena can provide
legitimacy and credibility to the system even before it is tested and used.

- "The expert has built up expertise over a long period of task performan-
ce." The more experience our expert has the greater the probability of success
for a performing expert system. This is a result of having the "feel" for how
things should be done along with the practice of having already done the
mechanics.

- "The expert will commit a substantial amount of time to the development
of the system." Getting a supervisor to release their expert for extended periods
of time can indeed be one of the major obstacles in the development of this
system.

- "The expert is capable of communicating his knowledge, judgment, and
experience, and the methods used to apply them to the e particular task."

- 'The expert is cooperative." Willingness to work in a group think
environment and participating in the success of the program makes for a better
development environment for all concerned.

- "The expert should be easy to work with."

- 'The expertise for the system, at least that pertaining to one particular
sub-domain, is to be obtained primarily from one expert." It is seldom that
experts can consistently agree on how to do any process. Therefor, by having
one expert we reduce our chances of argument and indecision due to too many
correct answers.

- "If multiple experts contribute in a particular sub-domain, one of them
should be the primary expert with final authority." One person must break the
ties or make the ultimate decision if conflicts arise.

PROBLEM BOUNDS

- 'The problem is neither too easy (taking a human expert less than a few
minutes) not too difficult (requiring more than a few hours for an expert)."
Expert system takes a great deal of time and effort to do properly. If simpler
methods can indeed satisfy the requirements then they should be used.

- 'The amount of knowledge required by the task is large enough to make
the knowledge base developed interesting."

- "The task is sufficiently narrow and self-contained: the aim is not for a
system that is expert in an entire domain, but for a system that is an expert in a
limited task within the domain." By limiting this project to software cost
estimating, we have precluded the rest of software costing economics which is a
broader field by far. This scoping is critical in making the finding of a system
expert realistic and also makes it doable in the time allotted.

- "Tne number or Important concepts (e.g., rules) requirea is bouna to
several hundreds."

DOMAIN AREA PERSONNEL

- "Personnel in the domain area are realistic, understanding the potential
of an expert system for their domain, but also realizing that thus far few expert
programs have resulted in actual production programs with major industrial
payoff." Expert system development is a relatively new technology with only a
few success stories. As a consequence then, there is potential for frustration
and lost motivation due slow or no progress.

- "Domain area personnel understand that even a successful system will
likely be limited in scope and, like a human expert, may not produce optimal or
correct results 100% of the time."

- 'There is strong managerial support from the domain area, especially
regarding the large commitment of time by the expert(s), and their possible
travel or temporary relocation, if required." Experts do things (like their
assigned jobs) other than developing expert systems. For a supervisor to give
up a major contributor to another agency is in most cases a great sacrifice.
Having managements support in this issue can only aid when there is a conflict
of priorities.

- "The specific task within the domain is jointly agreed upon by the
system developers and the domain area personnel." This will ensure that the
system the user requires will in fact be built by the system developers.

- "Managers in the domain area have previously identified the need to
solve the problem which the system attacks." If management sees a need for
the system then development will be supported.

- "The project is strongly supported by a senior manager, for protection
and follow-up." There are times in the development of any system, whether it
be hardware or software, that not everything goes according to plan. Budget

47

cuts, technology changes, and program slips are just a few problems that need
the intervention of senior management to keep the program on course and
viable.

- "Potential users would welcome the completed system." The reason for
this development in the first place is to satisfy a user's need.

- "The system can be introduced with minimal disturbance of the current
practice." The purpose of this system is to enhance the users capabilities. By
making it easy to learn and easy to integrate into the work centers, greatly
increases the potential for system acceptance with the least disturbance.

- "The user group is cooperative and patient." Cooperative in that they
provide information and advice when requested and patient when development
falls behind schedule or runs into problems.

- "The introduction of the system will not be politically sensitive or con-
troversial."

- 'The knowledge contained in the system will not be politically sensitive
or controversial."

- "The systems' results will not be politically sensitive, or controversial."

OTHER DESIRABLE FEATURES

- The system can be phased into use gracefully: Some percentage of
incomplete coverage can be tolerated (at least initially), and the determination
of whether a sub-problem is covered by the present system is not difficult."
This feature allows for the early integration and test of the cost estimating
model given that it will run in a modular or less that full-up form.

- "The task is decomposable, allowing relatively rapid prototyping for a
closed small subset of the complete task; and then slow expansion to the
complete task." Modularity allows for the ease of independent development of
sub-domain elements, the upgrade of modules independently, and ease of
maintenance as system requirements change.

- 'The task is not all-or-nothing: Some percentage of incorrect or non-op-
timal results can be tolerated." In most cases optimality is not the key. Experts
in a given field may not always provide a high percentage correct answers, so it
is too with expert systems.

- 'The skill required by the task is taught to novices." If the system can
be taught to a novice it has structure and cognitive processes built within it.

48

- 'There are books or other written materials discussing the domain." This
information provides a boundary for the domain. It becomes evident that if the
material is written it must have been written by someone who at least portends
to be an expert.

- "The task's payoff is measurable." How else could the utility of the
program be measured?

- "Experts would agree on whether the systems' results are good (correct)."
Consensus is important in gaining acceptance of the program. The more experts
agreeing the system will accomplish its designed task, the faster it will be
accepted.

- "Test cases are available." Once the system has been fielded it must be
tested. The best test of the model then is to use historical software cost
estimating data and test the expert system for correlation to the aforemen-
tioned results.

- "The need for the task is projected to continue for several years." This
allows us to monitor the efficacy of the expert system over an extended life
cycle of software development. It also allows us to modify and hone the system
to fit the specific requirements of each program it is being utilized on.

- 'The domain is fairly stable. Expected changes are such that they utilize
the strengths of expert systems (e.g., ease of updating or revising specific rules
in a knowledge base), but will not require major changes in reasoning proces-
ses." Modularity of the expert system software design will ensure ease of
update and change as the environment dictates.

- "The effects of corporate developments that will significantly hang the
definition of the task can be foreseen and taken into account."

- "No alternative solution to the problem is being pursued or is expected to
be pursued." Given the volatility of this technology, there is little doubt that
alternatives will develop. If they turn out to be a better estimator then so
much the better for the end user who is looking for improving their cost
estimating capabilities.

- 'The project is not on the critical path for any other development, and
has not absolute milestones for completion." This project is on a critical path
but for its own development. (See attachment 1, for critical milestones).

- "At the outset of the project, the expert is able to specify many of the
important concepts." This provides us with a higher probability of developing a

49

good task statement from the very beginning and not doing it piecemeal as the
system evolves.

- 'The tasks is similar to that of a successful existing expert system." The
closer this expert system comes to a proven, successful system the better it will
be in the long run. The gain from this is shortened development time and a
good breakdown of lessons learned.

- "Any requirement for real-time response will not involve extensive
effort."

- "The user interface will not require extensive effort." The key to the
acceptance of any software based system is user friendliness. Is the model easy
to use? Is it so complex that no one wishes to use it? Facility and speed are
major factors in the acceptance of new technology developments.

50

Appendix C: Expert ADglication Questionnaire
for Software Cost Estimation

This questionnaire has been written to obtain expert knowledge on
software cost estimation. In particular, the questions will conform to the
Darameters Identified in the Detailed COCOMO sortware cost estimation model
with additional queries for areas not covered by COCOMO. Those areas not
covered by COCOMO will be highlighted with boldface type. In almost all
cases the answering of the question will be followed by a "why" question, in
order to clarify any misunderstandings that may occur.

Ql: How are you presently estimating software development costs?

Q2: Do you feel there are some models that do a better job than others?

Q3: What do you consider as the core requirements for estimating software
cost? (ie, SLOC, function points, etc.)

Q4: Are there any algorithms or heuristics that you use or recommend, for
ascertaining development cost?

Q5: Are there any non-cost variables to consider when evaluating a software

proposal?

Q6 What is the impact of the above considerations on cost, if any?

Q7: How do you decide which Mode the software should be characterized as?

COST DRIVERS

Q8: What variables do you consider when evaluating a proposal for
Personnel attributes.

Q9: What indicators do you use to rate the Analysts capabilities (ACAP)?

51

Q10: What indicators do you use to rate the development team's Application
experience (AEXP)?

QI 1: What indicators do you use to rate the Programmer capabilities
(PCAP)?

Q12: What indicators do you use to rate the development team's Virtual
machine experience (VEXP)?

Q13: What indicators do you use to rate the teams's experience with the
programming language (LEXP)?

Q14: Are there any other personnel attributes you consider as important in
determining software cost?

QI 5: What variables do you consider when evaluating a proposal for

Project attributes?

Q16: How do you rate the use of modern programming practices (MODP)?

Q17: What ratings do you use when evaluating the proposal for the use of
software tools (TOOL)?

QI 8: How do you rate the impact of schedule constraints on software de-
velopment cost (SCED)?

Q19: How is managerial risk rated (RISK)?

Q20: How do you rate the impact of classified development (SECU)?

Q2 1: What variables do you consider when evaluating requirements vola-
tility (RVOL)?

Q22: Are there any other project attributes you consider important in
determining software cost?

Q23: What variables do you consider when evaluating a proposal for
product attributes?

52

Q24: How do you rate the impact of software reliability (RELY)?

Q25: What do you consider when rating the data base size (DATA)?

Q26: What variables are considered when rating required reusability
(RUSE)?

Q27: Are there any other product attributes you consider important in
determining software cost?

Q28: What variables do you consider when evaluating a proposal for
Computer attributes?

Q29: What criteria do you use when rating computer time constraints
(TIME)?

Q30 How do you measure the impact of system storage (STOR) limitations
on development cost?

Q3 1: What measures do you use when rating the virtual machine volatility
(VIRT)?

Q32: How do you rate the development center's ability to turnaround out-
put (TURN)?

Q33: Are there any other computer attributes you consider important in

determining software cost?

OTHER COST DRIVERS

Q34: How do you compute the development schedule for each effort?

Q35: What considerations do you make when calibrating your model?

Q36: How do you rate the proposal for software support or maintenance
costs?

Q37: Does the use of ADA have an impact on your determination of cost?

53

Q38: Are there any special cases, such as the development of an expert
system, that would change any of the above variables?

Q39: How do you determine total life-cycle cost?

54

Appendix D: Software Cost Exercise
for COST 676: Software Cost Estimation

(Ferens, 1990b)

PART l: DEVELOPMENT COSTS

A. General Description

The Air Force C-28 System Program Office (SPO) at Aeronautical Systems
Division (ASD) wants to acquire a new controls and displays program for the
C-28 cargo aircraft, which is now in initial production and has completed all
system-level reviews and audits. This avionics operational flight program
will be built to military specification requirements and will be totally
written in the Ada programming language (although certain portions may
include 20% microcode). The C-28 controls and displays (C&D) program will
be developed as a single Computer Software Configuration Item (CSCI) using
the traditional "waterfall" approach to software development. Tailored
editions of DoD-STD-2167A and associated data items are required. The
program is scheduled to begin on I July 1990: no end date has been es-
tablished, although support is scheduled to begin on I January 1998.
Software engineering personnel in the C-28 SPO have estimated the size of
the CSCI to be between 100,000 and 130,000 lines of Ada code, of which 30%
may be type definition and data statements.

Three companies have bid on the contract: Arcturus, Pollux, and Vega.
Best and final offers have been received, and no further discussions with the
contractors are allowed. Earlier in the source selection, ASD C-28 SPO
software engineers, along with a few software experts from the ASD en-
gineering deputate. visited the three contractors' facilities to obtain informa-
tion for contractor-peculiar model inputs (to be presented later). All
contractors participated and were cooperative except Spica Technologies,
Arcturus' subcontractor. (Arcturus provided the information for Spica.)

The bids for the CSCI development were as follows:

Arcturus: $9.1 million
Pollux: $8.5 million
Vega: $9.3 million

55

These bids are in constant 1990 dollars, which are to be used in all cost
estimates for development and support. No management reserve is allowed
in the bidding or in cost estimates, although the contract is cost plus fixed
fee. Procurement would like the C-28 SPO to select the lowest bidder,
although they will consider any bid within 10% of the low bid if it can be
sufficiently justified. Air Force Logistics Command (AFLC) has requested
that predicted support costs, and supportability of the software in general,
be considered in the selection of the development contractor. However, no
support bids were required or submitted.

B. Project Description

The C-28 C&D CSCI is a highly interactive program with difficult response
times and extensive interfaces to other C-28 system elements. Although the
program is not "life-threatening" it is being developed to military specifica-
tion requirements since a failure could cause high financial loss or may
severely affect the mission. The data base size has a ratio of forty to sixty
data base bytes per delivered source instruction, and the data base is
complex in structure and interaction.

The complexity of the CSCI is judged to be "very high" with about fifty
percent real-time code, advanced mathematics, and many difficult
algorithms. However, use of the Ada language is expected to promote a well-
structured program design with small modules. There will be moderate
module coupling and cohesion. Despite the CSCI's nature as a "stand-alone"
program, it does contain many interfaces and has special display re-
quirements. The displays are interactive and controlled by the CSCI.

The host development system, similar for all companies, consists of a
multiple VAX and a minimal Ada Program Set Environment (APSE). The
target system is a single central processing unit distributed system, much
like a communication's network, with a special operating system. The
rehosting of the C&D CSCI from the host to the target system should not be
difficult; it should only involve minor language and system differences.
However, significant changes to the virtual machines of host and target
systems may be expected every three months, and moderate changes may
occur in the development practices and procedures throughout the project.

Reusability for this CSCI is not an issue because of it's unique application;
and only small, non-critical changes are expected in the CSCI requirements
during the project. Security is an issue, however. since the program is

56

classified "Secret" and must conform to the "B-2" requirements of being
segmented into protected critical and non-protected components and units.

Requirements definition for the CSCI is expected to be fairly clear, but
difficult. Proposal-level requirements, which comprise about ten percent of
the total requirements effort, will be completed at contract award. No
formal requirements tools are mandatory.

During the effort it is exDected that mature design concepts will be used in
accordance with Ada and DoD-STD-2167A. However, some minor modifica-
tions due to technological advancement may occur, and Ada Programming
Set Environment (APSE) development tools are expected to result in some
productivity improvements. A "typical" integration and test percentage of
22% is expected, although quality assurance and test requirements must
address the possibility of high financial loss. Testing is not too difficult, but
will be extensive.

Development terminal response time is expected to be between a quarter
of a second and a half of a second. Computer turnaround time is expected to
be between six and thirty minutes. All companies will probably use four
different work-station types.

All companies are assumed to have all staff members exempt from
overtime pay, and should average 152 hours per month and 228 work days
per year. Contractors will be expected to travel to the C-28 SPO and other
agencies about four times a year.

C. Comoany Descrigtion

1. Arcturus: Arcturus Software has been in business for twenty years
and has about 1,000 people. They have developed many defense software
programs as a subcontractor to several major aerospace companies. They
have a very good record of meeting cost, schedule, and performance re-
quirements. This is their first effort as a primary contractor. To perform
part of the C-28 C&D CSCI effort, they have hired Spica Technologies as a
subcontractor. Spica which has been in business six years and has about 200
people, is known for their high caliber personnel, and has developed several
defense programs successfully when contracted alone. However, when they
are subcontractors, they are often difficult to work with and are generally
uncooperative with both the government managing agency and with the
prime contractor. Arcturus is knowledgeable of the potential difficulties, but
decided to "take a chance" because Spica has a display program that can be
used in this effort.

57

For this effort, Arcturus will develop the controls program from scratch;
the Ada lines of code are expected to be between 70,000 and 122,000; with
102,000 being "most-likely." The displays program will be developed by
Spica. It is a 40,000 line of code program written in JOVIAL which must be
converted to Ada. It is expected that 50% new design. 80% new code, and
30% new testing must be accomplished to recode this program and merge it
with Arcturus' controls program.

The mix of code for the Arcturus CSCI is about 50% real-time with 70%
new code; 10% on-line with 50% new design and all new code; 10% interac-
tive with 50% design and all new code; and 30% mathematics with 70% new
design and all new code.

The personnel for Arcturus and Spica are generally of high caliber. The
analysts and programmers are mostly experienced and are better than 75%
of their contemporaries. They have had three years' experience with similar
programs, and about 2 1/2 years' experience with Ada programs. However,
they only have about ten months' experience with the virtual machine.

Arcturus routinely uses modern design practices, and has extensive
automated development tools, although there is little integration. They do
possess a minimum APSE for Ada. They have about two years' experience
with DoD-STD-2167A practices.

Arcturus is located in Dallas, TX, and Spica is located in San Antonio, TX,
which is about 400 miles from Dallas. The developers must sometimes
travel between the two locations for consultation, support, and resources.

Timing and storage constraints on the development and target systems
are no problem for Arcturus' design; less than 50% of either are used. For
Arcturus, this project may be described as a "mixture of new and repeated
work", or a "normal new project". Both program design and user documenta-
tion have fully automated graphics and text support. There is no impact
from commercial-off-the-shelf (COTS) software. Integration effort may be
considered "closely coupled" using an experienced team, although there is a
mix of experienced and new people.

Arcturus and Spica personnel are 100% dedicated to the project, and have
good facilities with two people to an offi ,e. Their labor rate is $72 per hour,
or $ 11,000 per month.

2.Pollux Pollux Software Development, located in Orlando FL, has been
in business for 10 years and has rapidly grown to 2,000 people. They have
extensive experience with avionics software, including controls and displays
programs. To bid on the C-28 C&D contract, they teamed with Castor

58

Research, a company who has some military experience including the
development of a controls and displays program written in Ada for the A-30
aircraft. Castor has been in business for four years, and has about 150 full-
time people working in Kissimmee, FL, about 30 miles from Orlando. Castor
says they could modify their program very quickly and easily: but, in return,
they would be allowed to retain all data rights to their component of the C-
Z8 C&D CSCL. The result would be that only Pollux and Castor could suDDort
the program, and the cost would be 30% higher than "normal" due to sole-
source support. AFLC does not like this idea at all, since they do not want to
pay extra support money or be in a sole-source situation.

The teaming arrangement of Pollux and Castor is somewhat of an enigma.
Pollux and Castor both have team chiefs who manage personnel from both
companies. The Air Force expressed concern that Pollux may not be "in
control", but Pollux and Castor both stated that it was "matrix management,
like the Air Force uses". Travel between Orlando and Kissimmee will be
frequent for consulting and resource usage.

The C-28 C&D CSCI design has Pollux developing the majority of code
which is expected to be between 100,01)0 and 150,000 lines of Ada code,
with 125,000 lines being "most likely". Castor's program contains 80,000
lines of Ada code of which 10% must be redesigned and retested and 20%
recoded. This effectively results in a commercial off-the shelf (COTS)
program with some impact on design and development due to interfacing
requirements.

The CSCI consists of about 50% real-time code, 10% interactive code; 10%
on-line code, and 30% mathematical code: all of which will require about 60%
new design and 65 % new code.

The personnel assigned to the Pollux-Castor team are top-notch. The
analysts are very highly experienced and competent, and are in the top five
percent of the field. Programmers are in the top quarter of their field. The
team has had about six years' experience with similar applications, and
about 2 1/2 years' experience with Ada. They routinely use modern design
practices and have extensive automated development tools although there is
little integration. The tools include a minimum APSE for Ada. They have
two year's experience with DoD-STD-2167A practices, but only about ten
months' experience with the virtual machine.

Timing and storage may be a problem due to the relatively large size of
the CSCI. On both the development and target systems, timing and storage
are expected to be about 70% of capacity. About 25% of the code is time-

59

constrained, and some overlaying or segmentation may be needed in
primary storage.

Because Castor envisions sole-source support, they are not emphasizing
documentation. Design documentation is partially automated, and user
documentation has little or no automation for the programmers. The
integration effort for the program is "closely coupled" using an extensively
experienced team. The project is a mixture of new and repeated work, and
may be considered a "normal new project" for the team.

The team's personnel are 100% dedicated to the project, and have ade-
quate facilities with about three people per office. The team's labor rate is
$92 per hour, or $14,000 per month. They attribute their relatively low cost
to their cooperative teaming arrangement which avoids subcontracting fees
and other management problems associated with subcontracting. If they are
selected, they intend to form a separate company, Gemini Software Support
Corporation, to perform support for the C-28 C&D CSCI.

3._Vega: Vega Software Works is a relatively small company of 500
people, located in Biloxi, Mississippi. They have been in business for about
fifteen years, primarily in commercial software. They have written
programs for banking and other financial institutions, and have been praised
for their quality of work. Recently they have written some Ada programs
for commercial use, and have begun incorporating fault-tolerant features in
programs, especially exception handling, to circumvent errors. They have
perforaled two small Ada software projects for military command and
control applications, but have not yet implemented fault-tolerance in
military software. The C-28 C&D CSCI will represent their first attempt at
fault-tolerant military software. A single organization within Vega will be
responsible for software development; no subcontractor or teaming arran-
gements will be used.

Vega plans to develop the CSCI from scratch, and expects it to contain
between 90,000 and 132,000 lines of code, with 120,000 lines most likely".
The personnel for Vega are generally competent; their analysts have a
mixture of experience, and are about "average" compared with others. The
programmers, however, are generally experienced and are in the "top
quarter" of their field. The Vega team averages about 2 1/2 years' ex-
perience with Ada, but only has about ten months' experience with similar
applications, the virtual machine, and DoD-STD-2167A development prac-
tices. Vega makes general use of modern design practices and has basic
maxi-tools which include a minimal APSE.

60

For Vega's design, timing and storage constraints for the development and
target systems are no problem; less than 50% of either is used. This project
may be considered "novel", a new line of business for Vega. Their documen-
tation capability is not extensive; they have partially-automated graphics
text support for design documentation and little or no automation for user
documentation. Vega, however, does intend to fully comply with the tailored
DoD-STD-Z 167A documentation reQuirements for this Droject. Inte2ratlon
effort is "closely coupled" with a mix of personnel involved. There will be no
impacts from COTS software since none will be used. The mix of instruction,
all of which will be designed and coded from scratch, includes 50% real time
codes 10% online, 10% interactive, and 30% mathematical. Vega's fault-
tolerant design is expected to save 10% on support cost.

Vega personnel have about 60% access to resources, although the project
will be fully-staffed. The office facilities in Biloxi are good, with two people
sharing an office. Their labor rate is $72 per hour, or $1 1,000 per month.

61

PART II: SUPPORT COSTS

A General Description

AFLC plans to support the software at one of their five Air Logistics
Centers (ALCs) for a 15-year period beginning I January 1998. The most
likely choice is Warner-Robins ALC, where the
C-28 aircraft is currently being supported: however, it is possible that
Oklahoma City ALC may support it at a proposed consolidated flight program
support center. Most support will be performed using the block change
method with one block change expected per year.

AFLC cannot support the software with Air Force personnel because of
insufficient availability. However, AFLC strongly desires to complete
software support between the contractor chosen for development and
Fomalhaut Software Company. (It should be noted that support can noI be
done by any company not selected for development; e.g. Vega can not
support the software if Arcturus develops it.) AFLC currently favors Vega
because their design is expected to reduce estimated support costs by 10%.
They have expressed displeasure with Pollux, since they could not complete
the effort and a 30% increase in support costs over estimates would probably
result. They are slightly favorable about Arcturus, since they plan to
support the software without subcontracting to Spica, and they can compete
the effort with Fomalhaut.

B. Project Description

During the 15 year support period, it is expected that 15% of the code will
be changed each year, and that the software will grow by about 35% over
the period. Enhancements and quality levels are expected to be "typical" for
this type of project. The CSCI will be entirely supported at one location,
however, there will be five operational C-28 locations which will submit
problem reports, and may use slightly different configurations of the C&D
CSCI.

The CSCI is expected to be reasonably up-to-date and be functionally
partitioned to the lowest (unit) level. There are expected to be "average"
hardware and software capacity limitations at the support facility. Keeping
on schedule may be difficult, partly because the CSCI must interface with
many other elements on the C-28 aircraft and the number of changes
requested from the five operational locations.

62

It is not expected that the caliber of support personnel will change from
that of the development personnel, even though Pollux and Castor expect to
form the new Gemini Corporation, and Arcturus plans to drop subcontractor
Spica. Also, no environmental differences are anticipated. There are a few
differences among the three development contractors regarding software
support, however. Because Pollux expects sole source support, they will
have very little commented documentation and their listings will have little
information. The documentation they will develop is expected to have a
poor data dictionary. Arcturus and Vega are expected to have documenta-
tion with selected on-line comments, listings with extensive information and
comments, and on "average" amount of documentation available.

COTS impact, varies among the three development contractors: Vega will
have no COTS impact; Arcturus will have slight impact from the software
developed by Spica, and Pollux will have much impact, because of Castor's
proprietary program. Maintenance experience also varies. It is a "normal"
activity for Vega and Arcturus, but is a "familiar" activity for Pollux.

C. ComDany Description: FOMALHAUT

Fomalhaut Software is a company of about 750 personnel located in
Macon, GA near Warner Robins ALC. They have been in business about
seven years They have extensive experience in software support, or
"maintenance", since they have supported many programs of Warner Robins
ALC.

Fomalhaut has about "average" programmers and analysts who have
about 1 1/2 years' experience in Ada and 10 months' experience with the
virtual machine. They have about six years' experience with similar
applications, but only about one year with fault-tolerant software like that
proposed by Vega.

Fomalhaut makes some use of modern design practices by experienced
personnel. They have extensive tools to support Arcturus' design, including
on APSE, but only have basic maxi tools to support Vega's design. They have
about three years' experience with DOD-STD-2167A development practices.

Fomalhaut will be performing support at a single location and with a
single organization, although personnel may be only 50% dedicated to the C-
28 C&D CSCI effort. They view the project as a mixture of new and repeated
effort. Integration is viewed as a closely-coupled effort with a mix of
personnel assigned. Fomalhaut's office environment is not always conducive

63

to productivity, since it is an open bay area with little privacy in a renovated
civil war prison.

Also, documentation capability is weak - only partial automation of
graphics and text support exists, and the programmers have little or no
automated documentation capability. Despite the limitations, AFLC has
found Fomalhaut to be extremely conscientious and has a good track record.

Fomalhaut's labor rate is relatively low. The average salary is $59 per
hour, or $9,000 per month. All other information about the project is the
same as for the developer, Arcturus or realize the 10% savings from use of
fault-tolerance.

64

Appendix E: COCOMO Formulas and Effort Multipliers
(Boehm, 1981:352-355)

COCOMO Formulas
The Detailed COCOMO model used to develop the expert system in this

study. The formulas are as follows:

Software Mode

Organic (MM)NOM - 3.2(KDSI)t.05 (1)
TDEV W 2.5(MM)DEVO. 38 (2)

Semi-Detached (MM)NOM - 3.0(KDSI)I.12 (3)
TDEV - 2.5(MM)DEVO.35 (4)

Embedded (MM)NUM - 2.8(KDSI)I.20 (5)
TDEV W 2.5(MM)DEV0. 32 (6)

where,
(MM)NOM is man-months nominal
KDSI is thousand of delivered source instructions
TDEV is development schedule
(MM)DEV is development time in man-months

Adaotation Adjustment Factor (AAF)

AAF - 0.4 (%t design modified) + .3 (% code modified)

+ .3 (% integration modified) (7)

Equivalent Delivered Source Instructions (EDSI)

EDSI - (Adapted DSI) (AAF / 100) (8)

where,

Adapted DSI is adapted delivered source instructions

AAF is adaptation adjustment factor

65

Nominal Phase Distribution of Effort

(MM)NOMP - [(EDSI) (FRAC)p I + [(EDSI + (MM)NoM)] (9)

where,

(MM)NoMp nominal phase effort the module in man months

EDSI is equivalent delivered source instructions

(FRAC)p is phase distribution of effort

(MM)NOM is nominal effort in man months

Effort Multipliers

The following abbreviations are used in the subsequent listing to describe

the different phases of software development. Also, the specific product,

computer, personnel, and project cost drivers will be listed by attribute.

Program Phases

RPD - Requirements and Product Design
DD - Detailed Design
CUT - Code and Unit Test
IT - Integration and Test

Detailed COCOMO Cost Drivers

Product Attributes

RELY - Required software reliability
DATA - Data base size
CPLX - Software product complexity

Comouter Attributes

TIME - Execution time constraint
STOR - Main storage constraint
VIRT - Virtual machine volatility
TURN - Computer turnaround time

66

Personnel Attributes

ACAP - Analyst capability
AEXP - Applications experience
PCAP - Programmer capability
VEXP - Virtual machine experience
LEXP - Language experience

Project Attributes

MODP - Use of modern programming practices
TOOL - Use of software tools
SCED - Development schedule constraint

COCOMO Effort Multipliers

ACAP RPD DD CUT IT

VERY LOW 1.80 1.35 1.35 1.50
LOW 1.35 1.15 1.15 1.20
NOMINAL 1.00 1.00 1.00 1.00
HIGH 0.75 0.90 0.90 0.85
VERY HIGH 0.55 0.75 0.75 0.70

AEXP RPD DD CUT IT
VERY LOW 1.40 1.30 1.25 1.25
LOW 1.20 1.15 1.10 1.10
NOMINAL 1.00 1.00 1.00 1.00
HIGH 0.87 0.9 0.92 0.92
VERY HIGH 0.75 0.80 0.85 0.85

CPLX RPD DD CUT IT
VERY LOW 0.70 0.70 0.70 0.70
LOW 0.85 0.85 0.85 0.85
NOMINAL 1.00 1.00 1.00 1.00
HIGH 1.15 1.15 1.15 1.15
VERY HIGH 1.30 1.30 1.30 1.30
EXTRA HIGH 1.65 1.65 1.65 1.65

67

DATA RPD DD CUT IT
LOW 0.95 0.95 0.95 0.90
NOMINAL 1.00 1.00 1.00 1.00
HIGH 1.10 1.05 1.05 1.15
VERY HIGH 1.20 1.10 1.10 1.30

LEXP RPD DD CUT IT
VERY LOW 1.02 1.10 1.20 1.20
LOW 1.00 1.05 1.10 1.10
NOMINAL 1.00 1.00 1.00 1.00
HIGH 0.90 0.98 0.92 0.92

MODP RPD DD CUT IT
VERY LOW 1.05 1.10 1.25 1.50
LOW 1.00 1.05 1.10 1.20
NOMINAL 1.00 1.00 1.00 1.00
HIGH 1.00 0.95 0.90 0.83
VERY HIGH 1.00 0.90 0.80 0.65

PCAP RPD DD CUT IT
VERY LOW 1.00 1.50 1.50 1.50
LOW 1.00 1.20 1.20 1.20
NOMINAL 1.00 1.00 1.00 1.00
HIGH 1.00 0.83 0.83 0.83
VERY HIGH 1.00 0.65 0.65 0.65

RELY RPD DD CUT IT
VERY LOW 0.80 0.80 0.80 0.60
LOW 0.90 0.90 0.90 0.80
NOMINAL 1.00 1.00 1.00 1 .0C
HIGH 1.10 1.10 1.10 1.30
VERY HIGH 1.30 1.30 1.30 1.70

SCED RPD DD CUT IT
VERY LOW 1.10 1.25 1.25 1.25
LOW 1.00 1.15 1.15 1.10
NOMINAL 1.00 1.00 1.00 1.00
HIGH 1.10 1.10 1.00 1.00
VERY HIGH 1.15 1.15 1.05 1.05

68

STOR RPD DD CUT IT
NOMINAL 1.00 1.00 1.00 1.00
HIGH L-05 1.05 1.05 1.10
VERY HIGH 1.2 1.15 1.15 1.35
EXTRA HIGH 1.55 1.45 1.45 1.85

TIME RPD DD CUT IT
NOMINAL 1.00 1.00 1.00 1.00
HIGH 1.10 1.10 1.10 1.15
VERY HIGH 1.30 1.25 1.25 1.40
EXTRA HIGH 1.65 1.55 1.55 1.95

TOOL RPD DD CUT IT
VERY LOW 1.02 1.05 1.35 1.45
LOW 1.00 1.02 1.15 1.20
NOMINAL 1.00 1.00 1.00 1.00
HIGH 0.98 0.95 0.90 0.85
VERY HIGH 0.95 0.90 0.80 0.70

TURN RPD DD CUT IT
LOW 0.98 0.95 0.70 0.90
NOMINAL 1.00 1.00 1.00 1.00
HIGH 1.00 1.00 1.10 1.15
VERY HIGH 1.02 1.05 1.20 1.30

VEXP RPD DD CUT IT
VERY LOW 1.10 1.10 1.30 1.30
LOW 1.05 1.05 1.15 1.15
NOMINAL 1.00 1.00 1.00 1.00
HIGH 0.90 0.90 0.90 0.90

VIRT RPD DD CUT IT
LOW 0.95 0.90 0.85 0.80

NOMINAL 1.00 1.00 1.00 1.00
HIGH 1.10 1.12 1.15 1.20
VERY HIGH 1.20 1.25 1.30 1.40

69

ADDendix F: Expert Application Questionnaire
Responses

This questionnaire has been written to obtain expert knowledge on
software cost estimation. In particular, the questions will conform to the
parameters identified in the Detailed COCOMO software cost estimation model
with additional queries for areas not covered by COCOMO. Those P.eas not
covered by COCOMO will be highlighted with boldface type. In almost all
cases the answering of the question will be followed by a "why" question, in
order to clarify any misunderstandings that may occur.

Interviewee: Professor Dan Ferens, AFIT/LSY.
Years of applied cost estimation: Seven.
Years teaching cost estimation: Six.

Q1: How are you presently estimating software development costs?
Ans: I presently use REVIC extensively for classroom exercises and to

obtain rough order of magnitude estimates of cost. This model, however, is
not the most extensive and does have limitations.

Q2: Do you feel there are some models that do a better job than others?
Ans: SEER has been proven very effective Lt ESD (Electronic Systems

Division) in evaluating ground based avionic systems. Price-S, in a similar
fashion, has been proven effective for Aeronautical Systems Division (ASD)
airborne systems. For schedule computations, SEER and Price-S provide
fairly consistent estimates. SEER appears to have a greater number of input,
and an ESD study showed SEER to be accurate to within 10% for ground-
based projects.

Q3: What do you consider as the core requirements for estimating software
cost? (ie, SLOC, function points, etc).
Ans: Source Lines of Code is the primary determinant used in almost all

the models that I use. Function points are questionable because people don't
know what they are or how to use them. Are there any others that you
consider important to use? Ans: Other requirements that could be used if
validated would be:

- Specification Integration uf HW and SW.
- Environmental security.

70

- Language use such as ADA or other HOLs.
I don't like to consider personnel experience because it is difficult to
quantify and verify, although it is a cost driver.

Q4: Are there any algorithms or heuristics that you use or recommend, for
ascertaining development cost?
Ans: These are really situationally detendent. Some models lend

themselves better to some applications and others to others.

Q5: Are there any non-cost variables to consider when evaluating a software
proposal?
Ans: Feasibility of technical design or risk, management structure (such

as can occur in joint ventures), and people stability and quality.

Q6 What is the impact of the above considerations on cost, if any?
Ans: Again it depends on the situation.

Q7: How do you decide which Mode the software should be characterized as?
Ans: Use the COCOMO matrix as identified by Boehm in his book on

software cost estimation. Just as importantly, howevel, talk to the contractor
and ensure what he said in the proposal is actually the level of system com-
plexity and design he is building to.

COST DRIVERS

An overall comment about cost drivers. This i7terviewee felt that the
quantiication of these variables was best defined by the guidance provided
in the model handbook. Each model provides a quail/alive or quantitative
continuum for each attribute with a corollary numeric value for computation.
The expert e valuation comes in when analyzing the proposal and selecting
the qualitative level of application.

Q8: What variables do you consider when evaluating a proposal for
Personnel attributes.
Ans: In general for all cost drivers, I look for as fine a detail for each

attribute as possible. Some models, such as SEER, provide that detail and
others do not. If you can break your environment down into greater detaii,
such as a continuum from organic through embedded and even including
HOL's such as ADA, your output will be closer to what you will see in the

71

field. Finer detail in management variability, past history, and impacts of
factors like geographical separation will aid in decreasing the variability of
your output.

Q9: What indicators do you use to rate the Analysts capabilities (ACAP)?
Ans: This is rated as a percentile which is derived from the model's, in

this case COCOMO, description for the attribute.

Ql 0: What indicators do you use to rate the development team's Application
experience (AEXP)?
Ans: Use the model description for this variable.

Ql 1: What indicators do you use to rate the Programmer capabilities
(PCAP)?
Ans: Use the proposal and past history to get a feeling for their

potential performance. Interview the contractor to find out who will make
up the team and how long they are expected to stay with the effort. Team
integrity and overall time working with the team is also important. These
concepts apply to all team oriented attributes. This also applies to ACAP,
AEXP, VEXP, and LEXP.

Q12: What indicators do you use to rate the development team's Virtual
machine experience (VEXP)?
Ans: Use the model description for this variable.

Q 13: What indicators do you use to rate the teams's experience with the
programming language (LEXP)?
Ans: Use the model description for this variable.

Q 14: Are there any other personnel attributes you consider as important ir
deter mining software cost?
Ans: Perhaps turnover, it can be predicted.

QI 5: What variables do you consider when evaluating a proposal for
Project attributes?
Ans: Those identified as salient by the model for this attribute.

Q16: How do you rate the use of modern programming practices (MODP)?
Ans: In most cases I rate the use of MODP as HI. This is because most

72

contractors have gone to using practices as defined in DoD Std-2167A. This
category also lends itself to finer discrimination if that is required.

Q17: What ratings do you use when evaluating the proposal for the use of
software tools (TOOL)?
Ans: The same logic applies to TOOLS as indicated in the last question.

Q18: How do you rate the impact of schedule constraints on software de-
velopment cost (SCED)?
Ans: I let the model make the determination for me. Price-S, for

example, is a schedule oriented estimation package. It allows for schedule
generation and provides the user the capability of doing "what if" evalua-
tions of the proposal. Conversely, REVIC is limited in what it can do but does
provide fairly consistent results.

Q1 9: How is managerial risk rated (RISK)?
Ans: I perceive this to be a management reserve computation which is

normally a straightforward multiplier applied against the bottom line results
of the computations. Risk parameters have been poorly defined in the past
and really need more historical data for support before this variable can be
use effectively.

Q20: How do you rate the impact of classified development (SECU)?
Ans: Presently there are only two levels in REV IC, either classified or

unclassified. This makes the evaluation fairly easy but it doesn't take into
effect the different levels of classified that have the potential for driving cost
even higher. This category needs finer detail.

Q2 1: What variables do you consider when evaluating requirements vola-
tility (RVOL)?
Ans: Requirements volatility reflects the stability of the user's re-

qui_"melits. I would evaluate this category by reviewing the history of this
type of development and also the stability of the user in staying with the
original requirements.

Q22- Are there any other project attributes you consider important in
determining software cost?
Ans: Just those dictated by the model in use.

73

Q23: What variables do you consider when evaluating a proposal for
product attributes?
Ans: Those required by the model.

Q24: How do you rate the impact of software reliability (RELY)?
Ans: I use the continuum as defined in the model. SEER breaks this

category down into finer detail which makes it more effective.

Q25: What do you consider when rating the data base size (DATA)?
Ans: I skip this one in most cases. Not many people know what it

means plus it doesn't effect the evaluation that much. Just use a nominal
rating when evaluating weapons systems.

Q26: How do you select the values for product complexity (CPLX)?
Ans: Product complexity is best evaluated by using the model com-

plexity algorithms

Q27: What variables are considered when rating required reusability
(RUSE)?
Ans: This is another questionable category. Not many developers

know if the program is going to be reused or not. This rating could also fall
under complexity.

Q28: Are there any other product attributes you consider important in
determining software cost?
Ans: Not at this time.

Q29 What variables do you consider when evaluating a proposal for
Computer attributes?

Ans: Again, those which the model considers important for evaluation.

Q30: What criteria do you use when rating computer time constraints
(TIME)?
Ans: The values identified by the model in use.

Q31 How do you measure the impact of system storage (STOR) limitations
on development cost?
Ans: The values identified by the model in use.

74

Q32: What measures do you use when rating the virtual machine volatility
(VIRT)?
Ans: The values identified by the model in use.

Q33: How do you rate the development center's ability to turnaround out-
put (TURN)?
Ans: The values identified by the model in use.

Q34: Are there any other computer attributes you consider important in
determining software cost?
Ans: I consider the level of interactive development as an important

computer attribute. If it isn't interactive, given today's technology, I would
want the contractor to tell me why.

OTHER COST DRIVERS

Q35: How do you compute the development schedule for each effort?
Ans: I don't use any method other than that provided by the cost

estimation package.

Q36: What considerations do you make when calibrating your model?
Ans: In order to effectively calibrate the model you need to have the

historical data for the area you wish to calibrate. Contractor performance,
environment, and application are a few areas that can be calibrated.
Contractor performance is difficult do the standardized procedure of
sanitizing performance reports.

Q37: How do you rate the proposal for software support or maintenance
costs?
Ans: Maintenance costs are usually difficult to realistically evaluate

during the development period. Most models provide maintenance costs as a
part of their design, but have only been effective in estimating relative costs.

Q38: Does the use of ADA have an impact on your determination of cost?
Ans: In REVIC, as an example, ADA development has its own

algorithms. New languages, such as NOMAD which is a very high order
language (VHOL), would have to have their own multipliers or algorithms.

75

Q39: Are there any special cases, such as the development of an expert
system, that would change any of the above variables?

Ans: New languages and environments could have the potential for
changing any of the above variables, categories or attributes. They also have
the potential for creating new ones to make up for their unique
requirements.

Q40: How do you determine total life-cycle cost?
Ans: Total LCC is computed by the models. They are the sum of the

development and support costs.

76

Interview TI

Interviewee: Captain Gregory Pshsnychyniak, AFIT/LSY.
Years of applied cost estimation: Three in airborne avionics.

01: How ire you presently estimatine software develoDment costs?
Ans: We are Dresently using Price-S and REVIC in our cost estimations.

Sometime in the near future we will probably begin using SEER.

Q2: Do you feel there are some models that do a better job than others?
Ans: I feel SEER will do a better job. Price-S does a good job for us now

considering the program phase is pre-FSD. Price-S tends to generalize
factors like personnel attributes and tools so you don't get caught up in
unnecessary detail early on in the program.

Q3: What do you consider as the core requirements for estimating software
cost? (ie, SLOC, function points, etc).
Ans: Source lines of code and understanding of the software application

is vital. Complexity of the task and integration with hardware is also
essential.

Q4: Are there any algorithms or heuristics that you use or recommend, for
ascertaining development cost?
Ans: The only algorithms we use other than those in the models

themselves is the Wolverton equation for determining man month estimates.

Q5: Are there any non-cost variables to consider when evaluating a software
proposal?
Ans: Risk is probably one of the more subjective variables to evaluate.

Presently though, it is difficult to define and evaluate.

06 What is the impact of the above considerations on cost. if any?
Ans: All of the variables have an impact. Defense of my software

estimates will come from the engineering understanding of the terms in
question.

Q7: How do you decide which Mode the software should be characterized as?
Ans: When using Price-S I go to the subsystem level tie the mode to

phase of development. Price-S is broken down by CSCI, CSC, etc. Revic on

77

phase or development. PrIce-5 is broken down by C5I. c 5. etc. Revic on
the other hand uses the classical modes of organic, semi-detached, and
embedded. When using REVIC I always select embedded due to the com-
plexity of our programs.

COST DRIVERS

An overall comment about cost drivers. This interviewee felt that the
quantification of these variables was best defined by the guidance provided
in the model handbook When questions arose that were not coveredin the
manual then the local technical representative Irom General lectr ic lor
Price -, would be queried to ascertain the appropriate value for the
problem at hand Further, he felt that some drivers, such as data-base size,
had no effect on the outcome of the computation and would set those values
at nominal

Q8: What variables do you consider when evaluating a proposal for
Personnel attributes.
Ans: The overall experience of the contractor and the development

team in the use of ADA is important. That experience has a direct effect on
ACAP, AEXP, LEXP, PCAP, etc.

Q9: What indicators do you use to rate the Analysts capabilities (ACAP)?
Ans: Basically, because we use Price-S rather extensively, we use what

the model recommends for all the personnel attributes.

QIO: What indicators do you use to rate the development team's Application
experience (AEXP)?
Ans: Use the model description for this variable.

QI I: What indicators do you use to rate the Programmer capabilities
(PCAP)?
Ans: Use the model description for this variable.

Q12: What indicators do you use to rate the development team's Virtual
machine experience (VEXP)?
Ans: We take a hard look at the time the virtual machine has been in

place and the experience of the developing team in using it.

78

Q1 3: What indicators do you use to rate the teams's experience with the
programming language (LEXP)?
Ans: Use the model description for this variable.

Q14: Are there any other personnel attributes you consider as important in
determining software cost?
Ans: None at this time.

Q 15: What variables do you consider when evaluating a proposal for
Project attributes?
Ans: We use what the model recomnends explicitly. If not you end

up with an "apple and oranges" type of comparison and thereby lose
consistency of your results.

Q16: How do you rate the use of modern programming practices (MODP)?
Ans: If the contractor is complying with 2167 we will rate them fairly

high . We also evaluate how long they have been using these practices and
the experience of the development team in using them. This probably goes
back to personnel attributes again.

Q17: What ratings do you use when evaluating the proposal for the use of
software tools (TOOL)?
Ans: Its hard to separate tools from MODP. We rate them in a similar

fashion.

Q18: How do you rate the impact of schedule constraints on software de-
velopment cost (SCED)?
Ans: I let the model make the determination for me. However, for

better results it is necessary to provide a baseline or beginning point for the
program to begin.

Q19: How is managerial risk rated (RISK)?
Ans: We evaluate the contractor under one very simple criteria, do we

believe they can do the job. This evaluation is based in part on the intensity
of the effort.

Q20: How do you rate the impact of classified development (SECU)?
Ans: Use the model description for this variable.

79

Q2 1: What variables do you consider when evaluating requirements vola-
tility (RVOL)?
Ans: Requirements volatility goes above and beyond what the model

calls for. Freezing the requirements to ensure you have a baseline to design
to is essential for good estimation. We in the SPO control that to a certain
extent and prompt our users to that effect as necessary.

Q22: Are there any other project attributes you consider important in
determining software cost?
Ans: Use the model description for this variable.

Q23: What variables do you consider when evaluating a proposal for
product attributes?
Ans: Use the model description for this variable.

Q24: How do you rate the impact of software reliability (RELY)?
Ans: Use the model description for this variable.

Q25: What do you consider when rating the data base size (DATA)?
Ans: This one doesn't effect us at all. We set it to nominal.

Q26: How do you select the values for product complexity (CPLX)?
Ans: Complexity is one variable we are very concerned about. In our

system the values are invariably high due to the integration required of
different software modules and their potential effect on system operation.

Q27: What do you consider when rating required reusability (RUSE)?
Ans: We are looking at the reusability inherent in designing a program

using ADA. Airframe, system, subsystem, component modules, are all
subject to being reused. We are not looking at reuse of our software on
other programs, though, just wiLhin our system, the ATF.

Q28: Are there any other product attributes you consider important in
determining software cost?
Ans: Not at this time.

Q29 What variables do you consider when evaluating a proposal for
Computer attributes?

Ans: Again, those which the model considers important for evaluation.

80

Q30: What criteria do you use when rating computer time constraints
(TIME)?
Ans: Because we specified 50% below specified values this variable

will always be rated low.

Q31 How do you measure the impact of system storage (STOR) limitations
on development cost?
Ans: Same as for TIME.

Q32: What measures do you use when rating the virtual machine volatility
(VIRT)?
Ans: The values identified by the model in use.

Q33: How do you rate the development center's ability to turnaround out-
put (TURN)?
Ans: The values identified by the model in use.

Q34: Are there any other computer attributes you consider important in
determining software cost?
Ans: None at this time.

OTHER COST DRIVERS

Q35: How do you compute the development schedule for each effort?
Ans: We don't do the schedule other than that provided in the model.

Our input is provided to the managers of each particular program element
and they make up the schedules.

Q36: What considerations do you make when calibrating your model?
Ans: We don't calibrate because it isn't necessary. We leave the

models alone to ensure that each contractor is measured using the same
variables and algorithms. Otherwise it could potentially bias the results of
our evaluation.

Q37: How do you rate the proposal for software support or maintenance
costs?
Ans: Use the model description for this variable.

81

Q38: Does the use of ADA have an impact on your determination of cost?
Ans: Absolutely. As mentioned earlier ADA has an impact on size,

speed, development time, and a variety of other variables.

Q39: Are there any special cases, such as the development of an expert
system, that would change any of the above variables?

Ans: None that I am familiar with.

Q40: How do you determine total life-cycle cost?
Ans: Even though the models can pL ovide total LCC, I don't concern

myself with it at this time because I look at development cost only. Logistics
and engineering look at the total life-cycle cost.

82

Appendix G: Exgert System Rule Listing
Nextert Object'

RULE: Rule I
If

there is evidence of Project.Start
Then Action I

is confirmed.
And 0.0 is assigned to n
And 0.0 is assigned to p
And 0.0 is assigned to subedsi

RULE: Rule 2
If

there is no evidence of ISUBSYSTEMI.Requirement
Then Action 10

is confirmed.
And subedsi is assigned to <ISUBSYSTEMI>EDSI
And IMODEL.Conform=ext-inLtspec is assigned to ceis
And IMODEI.Lines_.ofCode is assigned to loc
And IMODEI.Need-innov-dat&.proc is assigned to nidp
And IMODE.Product-complexity is assigned to pc
And IMODEISchedule-adherence is assigned to sa
And IMODEI ConcurrenLdev-of-neviwhand-oper-proced is assigned to cdnh
And IMODEl.Conformpreestablish-req is assigned to cpr
And (ceis)+(loc).(nidp)+(pc)+(sa)+(cdnh)+(cpr) is assigned to IMODEI.Worth

RULE: Rule 3
If

ISUBSYSTEMI.Sced is "StretchedouLdevelopmenLschedule"
Tien Action 100

is confirmed.
And 1.1 is assigned to dISUBSYSTEM>.SCEDpd
And 1.1 is assigned to <ISUBSYSTEMI>.SCEDdd
And 1.0 is assigned to <ISUBSYSTEMI>.SCEDcut
And 1.0 is assigned to <ISUBSYSTEMI>.SCEDit
And <ISUBSYSTEMI>.Sced-rating is set to "High"

RULE: Rule 4
If

ISUBSYSTEMI.Sced is "Very-stretched.ouLdevelopmenLschedule"
Then Action 101

is confirmed.
And 1.15 is assigned to <ISUBSYSTEMI>.SCEDpd
And 1. 15 is assigned to <ISUBSYSTEMI>.SCEDdd
And 1.05 is assigned to <ISUBSYSTEMI >.SCEDcut
And 1.05 is assigned to <ISUBSYSTEMI>SCEDit
And <ISUBSYSTEMISced-rating is st to "VeryHigh"

83

RULE: Rule 3
if

edsi is greater than 0.0
Then Action 102

is confirmed.
And

(ISUBSYSTEMI).RELYpd* <ISUBSYSTEMI).STORpd* 'ISUBSYSTEMI .VIRTPI<ISUBSYSTEMI)
.TURNpd*ISUBSYSTEMI '.ACAPpd*<ISUBSYSTEMI>.MODPpd* ISUBSYSTEMI>.TOOLpd (ISUBSY
STEMI .SCEDpd is assigned to <ISUBSYSTEMI >EAFsspd

And
<ISUBSYSTEMI >.RELYdd* 4SUBSYSTEMI > STORdd * <ISUBSYSTEM[) .VIRTdd* <1SUBSYSTEM I>
TURNdd*'ISUBSYSTEMI .ACAPdd* cISUBSYSTEMI >.MODPdd*'ISUBSYSTEMI>.TOOLdd*'ISUBSYS
TEMI >.SCEDdd is assigned to <ISUBSYSTEMI)EAFssdd

And
<1SUBSYSTEM >PELY cut* 'ISUBSYSTEMI >.STCRcu* <ISUBSYSTEMI) .VIRf cut*<ISUBSYSTEMIL'
TURNcut*'ISUBSYSTEMI >.ACAPcut* 'ISUBSYSTEMI >.MODPcuL* <1 SUBS YSTEMI >.TOOLc ut* 'SUB
SYSTEMI).SCEDcut is assigned to 'fSUBSYSTEMI>.EAFsscut

And
<ISUBSYSTEMI>.RELYit* (ISUBSYSTEMI >.STORit* 'ISUBSYSTEMI >.VIiRTit 9 (ISU'BSYSTEMI >.TURN
it* ISUBSYSTEMI>.ACAPit* 'ISUBSYSTEMI>.MODPit* ISUBSYSTEMI>.TOOLit* ISUBSYSTEM> Sc
EDit is assigned to cISUBSYSTEMI>.EAFssit

And ISUBSYSTEMI >MMmodpd* ISUBSYSTEMI >EAFsspd is assigned to
<ISUBSYSTEMI .MMestpd

And ISUBSYSTEM[.MMmoddd* cISUBSYSTEM1 >EAFssdd is assigned to
(ISUBSYSTEMI>.MMestdd

And (ISUBSYSTEMI .MMmodcut* 4SUBSYSTEMI >EAFsscut-is assigned to
'<ISUBSYSTEMI>.MMestcut

And (IS UBSYSTEMI >.MMmodit* 'ISUBS YSTEMI >.EAFssit is assigned to
'ISUBSYSTEMI .MMestit

And
(ISUBSYSTEMI> MMestpd. ISUBSYSTEMI>.MMestd.ISUBSYSTEMI> MMestcut+ ISUBSYSTEMI
>.,!Mestit is assigned to dISUBSYSTEMI >MMesttot

RULE: Rule 6
if

(ISUBSYSTEMI> Modename is "ORGANIC"
Then Actionl103

is confirmed.
And (2.5* ISUBSYSTEM[>MMesttot),(0 .38) is assigned to <ISUBSYSTEMI .TDEV

RULE. Rule 7
if

<1SUBSYSTEMIk. Mode name is "SEMIDETACHIED"
Then Action 104

is ':onfirmed.
And (2 3ISUBSYSTEMI) MMesttot) (0.35) is assigned to 'ISUBSYSTEMI).TDEV

RULE Rule 8
if

(ISUBSYSTEMI.Modenamo is "EMBEDDED"
Then Action 105

84

RULE: Rule 8 (cont.)
is confirmed.
And (2.3*lISUBSYSTEM[).MMesttot),(0.32) is assigned to <ISUBSYSTEMI> TDEV

RULE: Rule 9
if

edsi is greater than 0.0
Then Action 106

is confirmed.
And ISUBSYSTEMI.AA4MMkpd is assigned to A 4A m m..kpd
And ISUBSYSTEMI.AAALMM....kdd is assigned to AA..2...mkdd
And ISUBSYSTEMI.AAALJA-MM-kcut is assigned to AA.Linmm .kcut
And ISUBSYSTEMI .AAL.A32vM..kit is assigned to AAiL-mm-it
And AA-4-mm-kpd is assigned to <jSUBSYSTEM.AA-44-MM-kpd
And AAX Zimm.kdd is assigned to <1SUBSYSTEM1.A.AL...M...kdd
And AA-l..mmnk cut is assigned to 'ISUE' YSTEMI >.AAI -MM-kcut
And AA-3mmkit is assigned to <ISUBSYSTEM[>.AA3-MM-Nkit
And AA4 L..m...pdcISUBSYSTEM[>.MMestpd is assigned to

And AAL2-...mm...kdd*I<SUBSYSTEMI .MMestdd is assigned to
<ISUBSYSTEMI>.AA6Idd

And AKA....mmkcut*4SUBSYSTEMI>.MMestcut is assigned to
'ISUBSYSTEM >.AA..5..X cut

And AA-3m kit* 1SUBSYSTEMI >.MMestit is assigned to
'<ISUBSYSTEMI>.AA7Kit

And
4ISUBSYSTEMI .A.L...&Ipd+ <4SUBSYSTEMI >.A..6......dd. 'ISUBSYSTEMI>.AA-5....Kcut
+(ISUBSYSTEMI.AA-7.-.Kit is assigned to 'ISUBSYSTEMI.AA-1l0 ~Ktot

And <ISUBSYSTEMJ >fl)SISUBSYSTEMI >.MMesttot is assigned to
CISUBSYSTEMI >EDIPMM

And ISUBSYSTEMI).AAO..-K tot/(ISUBSYSTEMI .EDSI is assigned to
<ISUBSYSTEMI .AJA.I--PEDS I

RULE: Rule 10
if

IMODEI.Worth is greater than or equal to 0.0
And IMODEIWortli is less than 20.0

Then ActionII
is confirmed.
And (3.2) ('SUBSYSTEM).EDSI/l000 .01,(1.05) is assigned to MMnom
And IMODEl Name is set to "ORGANIC"
And 'ISUBSYSTEMI).Modename is set to "ORGANIC"
And <ISUBSYSTEM[KEDI/MMnom is assigned to EDSIMMnom

RULE. Rule 11
if

* IMODEl Worth is greater than or equal to 20.0
And IMODEI.Worth is less than 45.0

Then Action 12
is confirmed.
And (3.0)((ISUBSYSTEMIEDSI/0000),(1.12) is assigned to MMnom

85

RULE: Rule 11 (cont.)
And IMODEI Name is set to "SEMIDETACHED"
And <ISUBSYSTEMI >.Modename is set to "SEMIDETACHED"
And <ISUBSYSTEMIE>DSI/MMnom is assigned to EDSIMMnom

RULE: Rule 12
If

JMODEl.Worth is greater than or equal to 45.0
And IMODEI.Worth is less than or equal to 70.0

Then Action 13
is confirmed.
And (2.8)*(<ISUBSYSTEMI .EDSI/1000.0),(1 .2) is assigned to MMnom
And IMODEl .Name is set to "EMBEDDED"
And ISUBSYSTEMI>.Modename is set to "EMBEDDED"
And <ISUBSYSTEM>£EDSI/MMnom is assigned to EDSIMMnom

RULE: Rule 13
If

<SUBSYSTEMI>.EDSI is less than or equal to 2000.0
And <ISUBSYSTEMI.Modename is "ORGANIC"

Then Action20
is confirmed.
And 0.16 is assigned to FRACpd
And 0.26 is assigned to FRACdd
And 0.42 is assigned to FRACcut
And 0.16 is assigned to FRACit
And (<ISUBSYSTEMI>EDSI*FRACpd)/EDSIMMnom is assigned to MMnompd
And (<ISUBSYSTEMI>£DSI*FRACdd)/EDSIMMnom is assigned to MMnomdd
And (<ISUBSYSTEMI>EDSI*FRACcut)/EDSIMMnom is assigned to MMnomcut
And (4ISUBSYSTEMI>EI*FRACit)/EDSIMMnom is assigned to MMnomit

RULE: Rule 14
if

edsi is greater than 2000.0
And edsi is less than or equal to 8000.0
And IMODEI Name is "ORGANIC"

Then Action2l
is confirmed.
And 0.16 is assigned to FRACpd
And 0.25 is assigned to FRACdd
And 0.4 is assigned to FRACcut
And 0.19 is assigned to FRACit
And (edsi*FRACpd)/EDSIMMnom is assigned to MMnompd
And (edsi*FRACdd)/EDSIMMnom is assigned to MMnomdd
And (edsi*FRACcut)/EDSIMMnom is assigned to MMnomcut
And (edsi*FRACit)/EDSIMMnom is assigned to MMnomit

RULE: Rule 15
If

edsi is greater than 8000.0
And edsi is less than or equal to 32000.0

86

RULE: Rule 13 (cont.)
And IMODEl Name is "ORGANIC"
Then Action22

is confirmed.
And 0.16 is assigned to FRACpd
And 0.24 is assigned to FR.ACdd
And 0.38 is assigned to FRACcut
And 0.22 is assigned to FRACiL
And (edsiFRACpd)/EDSIMMnom is assigned to MMnompd
And (edsiFRACdd)/EDSIMMnom is assigned to MMnomdd
And (edsi*RACcut)/EDSIMMnom is assigned to MMnomcut
And (edsiFRACit)/EDSIMMnom is assigned to MMnomit

RULE: Rule 16
if

edsi is greater than 32000 0O
And edsi is less than or equal to 128000.0
And IMODEl Name is "ORGANIC"

Then Action23
is confirmed.
And 0.16 is assigned to FRACpd
And 0.23 is assigned to FRACdd
And 0.36 is assigned to FRACcut
And 0.25 is assigned to FRACit
And (edsi*FRACpd)/EDSIMMnom is assigned to MMnompd
And (edsi*FRACdd)/EDSIMMnom is assigned to MMnomdd
And (edsi*FRACcut)/EDSlMMnom is assigned to MMnomcut
And (edsi*FRACit)/EDSIMMnom is assigned to MMnomit

RULE: Rule 17
if

edsi is less than or equal to 2000.0
And 1MODE,Name is 'SEMIDETACHED"

Then Action24
is confirmed.
And 0. 17 is assigned to FRACpd
And 0.27 is assigned to FRACdCI
And 0.37 is assigned to FRACcut
And 0. 19 is assigned to FRACAt
And (edsi*FRACpd)/EDSIMMnom is assigned to MMnompd
And (edsi*FRACdd)/EDSIMMnom is assigned to MMnomdd
And (edsi*FRACcut)/EDSIMMnom is assigned to MMnomcut
And (edsi*FRACit)/EDSIMMnom is assigned to MMnomit

RULE: Rule 18
if

edsi is greater than 2000.0
And edsi is less than or equal to 8000.0
And IMODEl .Name is "SEMIDETACHIED"

Then Action25
is confirmed.

87

RULE: Rule 18 (cont.)
And 0.!7 is assigned to FRACpd
And 0.26 is assigned to FRACdd
And 0.35 is assigned to FRACcut
And 0.22 is assigned to FRACit
And (edsi*FRACpd)/EDSIMMnom is assigned to MMnompd
And (edsi*FRACdd)/EDSIMMnom is assigned to MMnomdd
And (edsi*FRACcut)/EDSIMMnom is assigned to MMnomcut
And (edsi*FRACit)/EDSIMMnom is assigned to MMnomit

RULE: Rule 19
If

edsi is greater than 8000.0
And edsi is less than or equal to 32000.0
And IMODEI.Name is "SEMIDETACHED"

Then Action26
is confirmed.
And 0.17 is assigned to FRACpd
And 0.23 is assigned to FRACdd
And 0.33 is assigned to FRACcut
And 0.25 is assigned to FRACit
And (edsi*FRACpd)/EDSIMMnom is assigned to MMnompd
And (edsi*FRACdd)/EDSIMMnom is assigned to MMnomdd
And (edsi*FRACcut)/EDSIMMnom is assigned to MMnomcut
And (edsi*FRACit)/EDSIMMnom is assigned to MMnomit

RULE: Rule 20
If

edsi is greater than 32000.0
And edsi is less than or equal to 128000.0
And IMODEI.Name is "SEMIDETACHED"

Then Action27
is confirmed.
And 0.17 is assigned to FRACpd
And 0.24 is assigned to FRACdd
And 0.31 is assigned to FRACcut
And 0.28 is assigned to FRACit
And (edsi°FRACpd)/EDSIMMnom is assigned to MMnompd
And (edsi*FRACdd)/EDSIMMnom is assigned to MMnomdd
And (edsi*FRACcut)/EDSIMMnom is assigned to MMnomcut
And (edsi*FRACit)/EDSIMMnom is assigned to MMnomit

RULE : Rule 21
If

edsi is greater than 128000.0
And IMODE,.Name is "SEMIDETACHED"

Then Action28
is confirmed.
And 0.17 is assigned to FRACpd
And 0.23 is assigned to FRACdd
And 0.29 is assigned to FRACcut

88

RULE: Rule 21 (cont.)
And 0.31 is assigned to FRACit
And (edsi*FRACpd)/EDSIMMnom is assigned to MMnompd
And (edsi*FRACdd)/EDSIMMnom is assigned to MMnomdd
And (edsi*FRACcut)/EDSIMMnom is assigned to MMnomcut
And (edsi*FRACiL)/EDSIMMnom is assigned to MMnomit

RULE: Rule 22

edsi is less than or equal to 2000.0
And IMODEl Name is "EMBEDDED'

Then Action29
is confirmed.
And 0.-18 is assigned to FRACpd

RULE. Rule 22 (cont.)
And 0.28 is assigned to FRACdd
And 0.32 is assigned to FRACcut
And 0.22 is assigned to FRACit
And (edsi*FRACpd)/EDSIMMnom is assigned to MMnompd
And (edsiFRACdd)/EDSIMMnom is assigned to MMnomdd
And (edsi*FRACcut)/EDSIMMnom is assigned to MMnomcut
And (edsi*RACiL)/EDSIMMnom is assigned to MMnomit

RULE: Rule 23
if

there is evidence of ISUBSYSTEMi Requirement
And there is evidence of IMODULEL Requirement
And there is evidence of IMODULEI.Modify

Then Action3
is confirmed.
And IMODULEI .EDSI is assigned to edsi
And IMODULEI EDSID is assigned to edsid
And IMODULEI.EDSIC is assigned to edsic
And IMODULEI IEDII is assigned to edsii
And (0.4*edsid),(0.3*edsic),(0.3*edsii) is assigned to IMODULEI AAF
And IMODULE! AM' is assigned to aaf
And edsi*aaf/100.0 is assigned to edsi
And edsi-subedsi is assigned to subedsi
And p+ 1.0 is assigned to p
And Create Object 'MODULL-\p\ IMODULEI
And edsid is assigned to (IMODULEI>.EDSID
And edsic is assigned to (IMODULEV)EDSIC
And edsii is assigned to IMODULE EDSI I
And aaf is assigned to CIMODULEI >.AAF
And edsi is assigned to IMODULEI>EDS
And p is assigned to (IMODULEI >.Number
And Reset IMODULEI Requirement

89

RULE: Rule 24
If

edsi is greater than 2000.0
And edsi is less than or equal to 8000.0
And IMODEIName is "EMBEDDED"

Then Action30
is confirmed.
And 0.18 is assigned to FRACpd
And 0.27 is assigned to FRACId
And 0.3 is assigned to FRACcut
And 0.25 is assigned to FRACit
And (edsi*FRACpd)/EDSIMMnom is assigned to MMnompd
And (edsi*FRACdd)/EDSIMMnom is assigned to MMnomdd
And (edsi*FRACcut)/EDSIMMnom is assigned to MMnomcut
And (edsi*FRACit)/EDSIMMnom is assigned to MMnomit

RULE: Rule 25
If

edsi is greater than 8000.0
And edsi is less than or equal to 32000.0
And IMODEI.Name is "EMBEDDED"

Then Action3l
is confirmed.
And 0.18 is assigned to FRACpd
And 0.26 is assigned to FRACdd
And 0.28 is assigned to FRACcut
And 0.28 is assigned to FRACit
And (edsi*FRACpd)/EDSIMMnom is assigned to MMnompd
And (edsi*FRACdd)/EDSIMMnom is assigned to MMnomdd
And (edsi*FRACcut)/EDSIMMnom is assigned to MMnomcut
And (edsi*FRACit)/EDSIMMnom is assigned to MMnomit

RULE: Rule 26
If

edsi is greater than 32000.0
And edsi is less than or equal to 128000.0
And IMODEI.Name is "EMBEDDED"

Then Action32
is confirmed.
And 0.18 is assigned to FRACpd
And 0.23 is assigned to FRACdd
And 0.26 is assigned to FRACcut
And 0.31 is assigned to FRACit
And (edsi*FRACpd)/EDSIMMnom is assigned to MMnompd
And (edsi*FRACdd)/EDSIMMnom is assigned to MMnomdd
And (edsi*FRACcut)/EDSIMMnom is assigned to MMnomcut
And (edsi*FRACit)/EDSIMMnom is assigned to MMnomit

90

RULE: Rule 27
if

edsi is greater than 128000.0
And IMODEl Name is "EMBEDDED"

Then Action33
is confirmed.
And 0.18 is assigned to FRACpd
And 0.24 is assigned to FRACdd
And 0.24 Is assigned to FRACcut
And 0.34 is assigned to FRACit,
And (edsi*FRACpd)/EDSIMMnom is assigned to MMnompd
And (edsi*FRACdd)/EDSIMMnom is assigned to MMnomdd
And (edsi*FRACcut)/EDSIMMnom is assigned to MMnomcut
And (edsi*iRACit)/EDSIMMnom is assigned to MMnomit

RULE: Rule 28
if

MMnomit is greater than 0.0
Then ACTION 34

is confirmed.
And IMODULEI .PCAP is assigned to pcap
And IMODULEI .ILEP is assigned to lexp
And IMODULEI .VEXP is assigned to vexp

RULE: Rule 29
if

pcap is less than or equal to 13,0
Then Action35

is confirmed.
And IMODULEI .PCAP-..Rating is set to "Very-..Lov"
And 1.0 is assigned to IMODULEl >.PCAPpd
And 1.5 is assigned to <lMODULEl >.PCAPdd
And 1.3 is assigned to 'IMODULEI >.PCAPcut
And 1.3 is assigned to <IMODULEI >.PCAPit

RULE: Rule 30
if

pcap is greater than 15.0
And pcap is less than or equal to 33.0

Then Action36
is confirmed.
And IMODULEI.PCAP-.Rating is set to "Low"
And 1.0 is assigned to (IMODULEl >.PCAPpd
And 1.2 is assigned to clMODULEI >.PCAPdd

* And 1.2 is assigned to (IMODULEJ .PCAPcut
And 1.2 is assigned to (I MODULEI .PCAPit

RULE: Rule 31
if

pcap is greater than 33.0
And pcap is less than or equal to 33.0

91

RULE: Rule 31 (cont.)
Then Action37

is confirmed.
And IMODULI.IAP_.Rating is set to "Nominal"
And 1.0 is assigned to <IMODULEI.PCAPpd
And .0 is assigned to <MODULEI>.PCAPdd
And 1.0 is assigned to <IMODULEI >.PCAPcut
And 1.0 is assigned to <IMODULEI>.PCAPit

RULE: Rule 32
If

pcap is less than or equal to 75.0
And pcap is greater than 33.0

Then Action38
is confirmed.
And IMODULEI.PCAP.Rating is set to "High"
And 1.0 is assigned to (IMODULEI>.PCAPpd
And 0.83 is assigned to <IMODULEI>.PAPdd
And 0.83 is assigned to <IMODULEI>.PCAPcut
And 0.83 is assigned to <IMODULEI>.PCAPit

RULE: Rule 33
If

pcap is less than or equal to 100.0
And pcap is greater than 75.0

Then Action39
is confirmed.
And IMODULEI.PCAP_.Rating is set to "VeryHigh"
And 1.0 is assigned to <IMODULEI>.PCAPpd
And 0.65 is assigned to (IMODULEI>.PCAPdd
And 0.65 is assigned to <IMODULEI>.PCAPcut
And 0.65 is assigned to <IMODULEI>.PCAPit

RULE: Rule 34
if

lexp is less than or equal to 1.0
Then Action40

is confirmed.
And IMODULEI.LEXPRating is set to "Very..Lov"
And 1.02 is assigned to <IMODULEI>.LEXPpd
And 1.1 is assigned to <IMODULEI>.LEXPdd
And 1.2 is assigned to <IMODULEI>.LEIPcut
And 1.2 is assigned to <IMODULEI>,IEXPit

RULE: Rule 35
If

lexp is less than or equal to 4.0
And lexp is greater than 1.0

Then Action4l
is confirmed.
And IMODULE .LEXPRating is set to "Low"

92

RULE: Rule 35 (cont.)
And 1.0 is assigned to <IMODULEI>.LEXPpd
And 1.05 is assigned to <IMODULEI>.LEXPdd
And 1.1 is assigned to <IMODULEI>.LEXPcut
And 1.1 is assigned to <IMODULEI>.LEXPit

RULE: Rule 36
If

lexp is less than or equal to 12.0
And lexp is greater than 4.0

Then Action42
is confirmed.
And IMODULEILEXP.Rating is set to "Nominal"
And 1.0 is assigned to <IMODULEI>.LEXPpd
And 1.0 is assigned to <IMODULEI>.LEXPdd
And 1.0 is assigned to <IMODULEI>.LEXPcut
And 1.0 is assigned to <IMODULEI>.LEXPit

RULE: Rule 37
If

lexp is greater than 12.0
Then Action43

is confirmed.
And IMODULEI.LEXPRating is set to "High"
And 1.0 is assigned to <IMODULEI>,LEXPpd
And 0.98 is assigned to (IMODULEI>.LEXPdd
And 0.92 is assigned to <IMODULE >.LEXPcut
And 0.92 is assigned to <IMODULEI>.LEXPit

RULE: Rule 38
If

vexp is less than or equal to 4.0
Then Action44

is confirmed.
And IMODULEI.VEXP..Rating is set to "VeryLow"
And 1.1 is assigned to <IMODULEI>.VEXPpd
And 1.1 is assigned to <IMODULE> VEXPdd
And 1.3 is assigned to (IMODULEI>.VEXPcut
And 1.3 is assigned to IMODULEI>.VEXPit

RULE: Rule 39
If

veip is greater than 4.0
And vexp is less than or equal to 12.0

* Then Action45
is confirmed.
And IMODULEI.VEXP_.Rating is set to "Low"
And 1.03 is assigned to <IMODULEI>.VEXPpd
And 1.05 is assigned to <IMODULEI>.VEXPdd
And 1.15 is assigned to <IMODULEI>,VEXIPcut
And 1.13 is assigned to <IMODULEI>.VEXPit

93

RULE: Rule 40
if

yexp is greater than 12.0
And veip is less than or equal to 36.0

Then Action46
is confirmed.
And IMODULEI.VEXP...Rating is set to "Nominal"
And 1.0 is assigned to IMODULEI>.VEXPpd
And 1.0 is assigned to IMODULEI>.VEKPdd
And 1.0 is assigned to <1IMODULE .VEXPcut
And 1.0 is assigned to <IMODULE>.VEXPit

RULE: Rule 41
if

vexp is greater than 36.0
Then Action47

is confirmed.
And IMODULEI.VEXP...Rating is set to "High"
And 0.9 is assigned to cIMODULEI .VEXPpd
And 0.9 is assigned to 4IMODULEI >VPdd
And 0.9 is assigned to <IMODULEI>.VEXPcut
And 0.9 is assigned to <IMODULEI >.VEXPit

RULJE: Rule 42
if

edsi is greater than 0.0
Then Action48

is confirmed.
And IMODULE! .CPLXnesting is assigned to nesting
And IMODULE! .CPLXstdmathrou is assigned to stdmathrou
And IMODULE .CPLXio is assigned to io
And IMODULE! .CPLXdatamgt is assigned to datamgt
And nesting-stdmathrouio+datamgt is assigned to cplu

RULE: Rule 43
if

cplu is less than or equal to 3.0
Then Action49

is confirmed.
And IMODULEI.CPLX...Rating is set to "Very-Low"
And 0.7 is assigned to cIMODULEI>.CPLXpd
And 0.7 is assigned to <1IMODULEI .CPLdd
And 0.7 is assigned to c!MODULE>.CPLXcut
And 0.7 is assigned to <1MODULE! >.CPLXit

RULE: Rule 44
if

there is evidence of ISUBSYSTEM! Requirement
And there is evidence of IMODULE! Requirement
And there is no evidence of IMODULE! Modify

94

RULE: Rule 44 (cont.)
Then Action5

is confirmed.
And IMODULEI .EDSI is assigned to edsi
And edsi~subedsi is assigned to subedsi
And p- 1.0 is assigned to p
And Create Object'MODULL-Ap\ IMODULEI
And p is assigned to '<lMODULEI.Number

* And edsi is assigned to <IMODULEIVEDSI
And Reset IMODULE! Requirement

RULE: Rule 45
if

cpux is less than or equal to 10.0
And cpux is greater than 5.0

Then Action5O
is confirmed.
And IMODULEI.CPLL-Rating is set to "Low"
And 0.83 is assigned to 'IMODULEI>.CPLXpd
And 0.83 is assigned to <1MODULEI>.CPLXdd
And 0.83 is assigned to (IMODULEI.CPLXcut
And 0.83 is assigned to (IMODULEI>.CPLXit

RULE: Rule 46
if

cplx is less than or equal to 15.0
And cplx is greater than 10.0

Then ActionS 1
is confirmed.
And IMODULEI .CPLL-Rating is set to "Nominal"
And 1.0 is assigned to <IMODULEI .CPLpd
And 1.0 is assigned to <IMODULE[.CPLXdd
And 1.0 is assigned to <IMODULEI>.CPLXcut
And 1.0 is assigned to 'IMODULEV >CPLXit

RULE: Rule 47
if

cpux is less than or equal to 20.0
And cplx is greater than 13.0

Then Action52
is confirmed.
And IMODULEI .CPLL-Rating is set to "High"
And 1. 13 is assigned to <IMODULEI >.CPLXpd
And 1. 13 is assigned to (I MODULE >.CPLXdd
And 1.15 is assigned to '(IMODULEI >.CPLXcut
And 1. 15 is assigned to (IMODULEI >,CPLXit

RULE: Rule 48
if

cplx is less than or equal to 30.0
And cpux is greater than 20.0

95

RULE.: Rule 48 (cont.)
Then Action53

is confirmed.
And IMODULE) .CPLL-Rating is set to "Very-High"
And 1.3 is assigned to <IMODULEI>.CPLXpd
And 1.3 is assigned to d)MODULEI>.CPLXdd
And 1.3 is assigned to 4IMODULEI .CPLXcuL
And 1.3 is assigned to)IMODULE .CPLXit

RULE: Rule 49
if

cpux is less than or equal to 40.0
And cpix is greater than 30.0

Then Action54
is confirmed.
And IMODULEI CPLLRating is set to "Extra-High"
And 1.63 is assigned to)IMODULEI>.CPLXpd
And 1.65 is assigned to <1MODULE > CPLXdd
And 1.63 is assigned to dIMODULEI >CPLXcut
And 1.65 is assigned to <IMODULEI >.CPLXiL

RULE: Rule 5u
if

edsi is greater than 0.0
Then Action55

is confirmed.
And)IMODULE!).CPLXPd* <IMODULEI >.LJEXPpd <IMODULEI>.VEXPpd' <IMODULE) >.PCAPpd

is assigned to EAFmpd
And 'IMODULEI>.CPLXdd* IMODULEI>.LEXPdd 4IMODULEI>.VEXPdd* (IMODULEI) PCAPdd is

assigned to EAFmdd
And

<IMODULEI>.CPLXcut* IMODULE) .LEXPcut* IMODULEI>.VEXPcut*<I MODULE> .PCAPcutis
assigned to EAFmcut

And (IMODULEI> CPLXit* <IMODULEI>.LEXPit 'I MODULE)' VEXPit''I MODULE) .PCAPitis
assigned to EAFmit

And MMnompd*EAFmpd is assigned to <ISUBSYSTEMI>.MMmodpd
And MMnomdd*EAFmdd is assigned to 4ISUBSYSTEMI>.MMmoddd
And MMnomcut*EAFmcut is assigned to <ISUBSYSTEMI>.MMmodcut
And MMnomit*EAFmit is assigned to tISUBSYSTEMI >MMmodit

RULE. Rule 51
if

ISUBSYSTEM) .Reliability is "Min imal-recovery-.cost"
Then Action56

is confirmed.
And 0.8 is assigned to dISUBCYSTPEM[l.RELYpd
And 0.8 is assigned to d)SUBSYSTEMIb.RELYdd
And 0.8 is assigned to c)SUBSYSTEMI>.RELYcut
And 0.6 is assigned to c)SUBSYSTEM)WRELYit
And <ISUBSYSTEMI>.Rely...rating is set to "Very-Low"

96

RULE: Rule 52
If

ISUBSYSTEMI.Reliability is "Low.recovery.cost"
Then Action57

is confirmed.
And 0.9 is assigned to <ISUBSYSTEMI>RELYpd
And 0.9 is assigned to <ISUBSYSTEMI>RELYdd
And 0.9 is assigned to <ISUBSYSTEMI>.RLYcut
And 0.8 is assigned to ISUBSYSTEMI>.RELYIt
And <ISUBSYSTMI>.Rely-rating is set to "Low"

RULE: Rule 53
if

ISUBSYSTEMI Reliability is "Moderate-re covery-cost"
Then Action58

is confirmed.
And 1.0 is assigned to <ISUBSYSTEMI>.RELYpd
And 1.0 is assigned to <ISUBSYSTEMI>.RELYdd
And 1.0 is assigned to <ISUBSYSTEMI>.RELYcut
And 1.0 is assigned to <ISUBSYSTEMI>RELYit
And (ISUBSYSTEMI>Rely-rating is set to "Nominal"

RULE: Rule 54
If

ISUBSYSTEMI Reliability is "High-recovery-cost"
Then Action59

is confirmed.
And 1.1 is assigned to <ISUBSYSTEMI>.RELYpd
And 1.1 is assigned to <ISUBSYSTEMI>.RELYdd
And 1.1 is assigned to <ISUBSYSTEMI>.RELYcut
And 1.3 is assigned to ISUBSYSTEMI>.RELYit
And (ISUBSYSTEMI>.Rely-rating is set to "High"

RULE: Rule 55
If

ISUBSYSTEMI.Reliability is "Life-threatening"
Then Action60

is confirmed.
And 1.3 is assigned to <ISUBSYSTEMI>.RELYpd
And 1.3 is assigned to <ISUBSYSTEMI>.RELYdd
And 1.3 is assigned to 4<SUBSYSTEMI>.RELYcut
And 1.7 is assigned to <ISUBSYSTEMI>.RELYit
And <ISUBSYSTEMI>Rely-rating is set to "Very-High"

RULE: Rule 56
If

ISUBSYSTEMITime is less than or equal to 50.0
Then Action6l

is confirmed.
And 1.0 is assigned to <ISUBSYSTEMI>.TIMpd
And 1.0 is assigned to <ISUBSYSTEMI>,TIMdd

97

RULE: Rule 56 (cont.)
And 1.0 is assigned to <ISUBSYSTEM>,TIMEcut
And 1.0 is assigned to <ISUBSYSTEMI>.TIMEit
And <ISUBSYSTEMI>.Timeratin g is set to "Nominal"

RULE: Rule 57
If

ISUBSYSTEMI.Time is less than or equal to 70.0
And ISUBSYSTEMI.Time is greater than 30.0

Then Action62
is confirmed.
And 1.1 is assigned to <SUBSYSTEMI>.TIMEpd
And 1.1 is assigned to <ISUBSYSTEMI>.TIMEdd
And 1.1 is assigned to <ISUBSYSTEMI>.TIMEcut
And 1.15 is assigned to <ISUBSYSTEMI>.TIMEit
And <1SUBSYSTEML>.Time-rating is set to "High"

RULE: Rule 58
If

ISUBSYSTEMI.Time is less than or equal to 94.0
And ISUBSYSTEM.Time is greater than 70.0

Then Action63
is confirmed.
And 1.3 is assigned to <ISUBSYSTEMI>.TIMEpd
And 1.25 is assigned to <ISUBSYSTEMI>TIMEdd
And 1.25 is assigned to <iSUBSYSTEMI >TIMEcut
And 1.4 is assigned to <ISUBSYSTEMI>.TIMEit
And <ISUBSYSTEMI.Time-rating is set to "VeryHigh"

RULE: Rule 59
If

ISUBSYSTEMI Time is greater than or equal to 95.0
Then Action64

is confirmed.
And 1.65 is assigned to <ISUBSYSTEMI>.TIMEpd
And 1.55 is assigned to <ISUBSYSTEMI >.TIMEdd
And 1.55 is assigned to <ISUBSYSTEMI >.TIMEcut
And 1.95 is assigned to <ISUBSYSTEMI>.TIMEit
And <ISUBSYSTEM!>.Time-rating is set to "Extra-High"

RULE: Rule 60
If

ISUBSYSTEMIStor is less than or equal to 50.0
Then Action65

is confirmed.
And 1.0 is assigned to <ISUBSYSTEMI >.STORpd
And 1.0 is assigned to <ISUBSYSTEMI>.STORdd
And 1.0 is assigned to <ISUBSYSTEMI>.STORcut
And 1.0 is assigned to <ISUBSYSTEMI>.STORit
And (ISUBSYSTEMI>Stor-rating is set to "Nominal"

98

RULE: Rule 61
If

ISUBSYSTEMIStor is less than or equal to 70.0
And ISUBSYSTEMI.Stor is greater than 50.0

Then Action66
is confirmed.
And 1.05 is assigned to <ISUBSYSTEMI>.STORpd
And 1.05 is assigned to <ISUBSYSTEMI>.STORdd
And 1.05 is assigned to <ISUBSYSTEMI>.STORcut
And 1.1 is assigned to]ISUBSYSTEMI>.STORit
And <ISUBSYSTEMI>,Stor-rating is set to "High"

RULE: Rule 62

ISUBSYSTEMI.Stor is less than or equal to 94.0
And ISUBSYSTEMI Stor is greater than 70.0

Then Action67
is confirmed.
And 1.2 is assigned to <SUBSYSTEMI >.STORpd
And 1.15 is assigned to (ISUBSYSTEMI[.STORdd
And 1.15 is assigned to <ISUBSYSTEM[>.STORcut
And 1.35 is assigned to <ISUBSYSTEMI>.STORit
And <ISUBSYSTEMI>.Stor..rating is set to "Very-High"

RULE: Rule 63
If

ISUBSYSTEMI.Stor is greater than 94.0
Then Action68

is confirmed.
And 1.55 is assigned to <ISUBSYSTEMI>.STORpd
And 1.45 is assigned to <ISUBSYSTEMI>.STORdd
And 1.45 is assigned to <ISUBSYSTEM>,STORcut
And 1.85 is assigned to <ISUBSYSTEMI>.STORit
And <ISUBSYSTEMI.Stor=.rating is set to "Extra-High"

RULE: Rule 64
If

ISUBSYSTEMI Virt is "On ce.a.=year"
Then Action69

is confirmed.
And 0.93 is assigned to <ISUBSYSTEMI>.VIRTpd
And 0.9 is assigned to <ISUBSYSTEMI>.VIRTdd
And 0.83 is assigned to <ISUBSYSTEMI>.VIRTcut
And 0.8 is assigned to <ISUBSYSTEMI>.VIRTit
And ISUBSYSTEM.Stor.rating is set to "Low"

RULE: Rule 65
If

ISUBSYSTEMI.Virt is "Every_6.months"
Then Action7O

is confirmed.

99

RULE: Rule 65 (cont.)
And 1.0 is assigned to <ISUBSYSTEMI>.VIRTpd
And 1.0 is assigned to <1SUBSYSTEMI>.VRTdd
And 1.0 is assigned to <ISUBSYSTEMI>.VIRTcut
And 1.0 is assigned to <ISUBSYSTEMI>.VIRTit
And <ISUBSYSTEMI>Storrating is set to "Nominal"

RULE: Rule 66
If

ISUBSYSTEMI.Virt is "Every_2-months"
Then Action7l

is confirmed,
And 1.1 is assigned to <ISUBSYSTEMI>.VIRTpd
And 1.12 is assigned to (ISUBSYSTEMI>.VIRTdd
And 1, 15 is assigned to <ISUBSYSTEMI>.VIRTcut
And 1.2 is assigned to dISUBSYSTEMI>.VIRTit
And <ISUBSYSTEMI>.Stor-rating is set to "High"

RULE: Rule 67
If

ISUBSYSTEMI.Virt is "Every_2_weeks"
Then Action72

is confirmed.
And 1.2 is assigned to <ISUBSYSTEMI>.VIRTpd
And 1.25 is assigned to <ISUBSYSTEMI>.VIRTdd
And 1.3 is assigned to <ISUBSYSTEMI>.VIRTcut
And 1.4 is assigned to <ISUBSYSTEMI>.VIRTit
And (ISUBSYSTEM>.Stor-rating is set to "VeryHigh"

RULE: Rule 68
If

ISUBSYSTEMI.Turn is "Interactive"
Then Action73

is confirmed.
And 0.98 is assigned to <ISUBSYSTEMI >.TURNpd
And 0,95 is assigned to <ISUBSYSTEMI>.TURNdd
And 0.7 is assigned to <ISUBSYSTEM>.TURNcut
And 0.9 is assigned to (ISUBSYSTEMI >.TURNit
And <ISUBSYSTEMI>.Turn.ating is set to "Low"

RULE: Rule 69
If

ISUBSYSTEMI .Turn is "Less-than_4.hours"
Then Action74

is confirmed.
And 1.0 is assigned to <ISUBSYSTEMI>.TURNpd
And 1.0 is assigned to <ISUBSYSTEMI>TURNdd
And 1.0 is assigned to <ISUBSYSTEMI.TURNcut
And 1.0 is assigned to <ISUBSYSTEMI>.TURNit
And cISUBSYSTEMI>.Turn-ratin g is set to "Nominal"

100

RULE : Rule 70
If

ISUBSYSTEMI.Turn is "Between_4=.and_12_hours"
Then Action75

is confirmed.
And 1.0 is assigned to ISUBSYSTEMI>,TURNpd
And 1.0 is assigned to <ISUBSYSTEMI>.TURNdd
And 1.1 is assigned to <ISUBSYSTEMI>.TURNcut
And 1.15 is assigned to <SUBSYSTEMI>.TURNIL
And ISUBSYSTEMb>.Turnrating is set to "High"

RULE : Rule 71
If

ISUBSYSTEMI Turn is "Greaterthan_12_hours"
Then Action76

is confirmed.
And 1.02 is assigned to <ISUBSYSTEMI>.TURNpd
And 1.05 is assigned to <ISUBSYSTEMi>.TURNdd
And 1.2 is assigned to <ISUBSYSTEMI>.TURNcut
And 1.3 is assigned to <ISUBSYSTEMI>.TURNit
And <ISUBSYSTEMI{.Turn__rating is set to "Very-High"

RULE: Rule 72
If

ISUBSYSTEMI.ACAP is " LowesL15th-percentile"
Then Action77

is confirmed.
And 1.S is assigned to <ISUBSYSTEMI>.ACAPpd
And 1.35 is assigned to <ISUBSYSTEMI>.ACAPdd
And 1.35 is assigned to <ISUBSYSTEMI>.ACAPcut
And 1.5 is assigned to <ISUBSYSTEMI>.ACAPit
And <ISUBSYSTEMI>.ACAP.rating is set to "Very-Low"

RULE: Rule 73
If

ISUBSYSTEMI.ACAP is "Between-thel5(th_.and_35th-percen tile"
Then Action78

is confirmed.
And 1.35 is assigned to <ISUBSYSTEMI>.ACAPpd
And 1. 15 is assigned to <ISUBSYSTEMI>.ACAPdd
And 1.15 is assigned to <ISUBSYSTEMI>.ACAPcut
And 1.2 is assigned to <ISUBSYSTEMI,.ACAPit
And <ISUBSYSTEMI>.ACAP_.rating is set to "Low"

RULE: Rule 74
If

ISUBSYSTEMI.ACAP is "Between.the_35th&.d_55th-percen tile"
Then Action79

is confirmed.
And 1.0 is assigned to <ISUBSYSTEMI .ACAPpd
And 1.0 is assigned to ISUBSYSTEMI>.ACAPdd

101

RULE: Rule 74 (cont.)
And 1.0 is assigned to <ISUBSYSTEMI >.ACAPcut
And 1.0 is assigned to <ISUBSYSTEMI>.ACAPit
And <ISUBSYSTEMI>.ACAP..rating is set to "Nominal"

RULE: Rule 75
If

ISUBSYSTEMI.ACAP is "Between-the_55th.and75th-percentile"
Then ActionSO

is confirmed.
And 0.75 is assigned to <ISUBSYSTEMI>.ACAPpd
And 0.9 is assigned to <ISUBSYSTEMI>,ACAPdd
And 0.9 is assigned to <ISUBSYSTEMI>.ACAPcut
And 0.85 is assigned to <ISUBSYSTEMI>.ACAPit
And <ISUBSYSTEMI>.ACAP-rating is set to "High"

RULE: Rule 76
If

ISUBSYSTEMI.ACAP is "Above-the_75th-percentile"
Then ActionS 1

is confirmed.
And 0.55 is assigned to <ISUBSYSTEMI>.ACAPpd
And 0.75 is assigned to <ISUBSYSTEMI>.ACAPdd
And 0.75 is assigned to <ISUBSYSTEMI>.ACAPcut
And 0.7 is assigned to <ISUBSYSTEMI>.ACAPit
And <ISUBSYSTEMI>.ACAP.rating is set to "Very-High"

RULE: Rule 77
If

ISUBSYSTEMI .AEXP is "Less.than_4_months"
Then Action82

is confirmed.
And 1.4 is assigned to <ISUBSYSTEMI >AEXPpd
And 1.3 is assigned to <ISUBSYSTEMI>.AEXPdd
And 1.23 is assigned to <ISUBSYSTEMI>. AEXPcut
And 1.25 is assigned to <ISUBSYSTEMI>.AEXPit
And <ISUBSYSTEMAEXPrating is set to "Very=Lov"

RULE: Rule 78
If

ISUBSYSTEMI[AEXP is "Between..4_and-l2.months"
Then Action83

is confirmed.
And 1.2 is assigned to (ISUBSYSTEMI>.AEXPpd
And 1.15 is assigned to <SUBSYSTEMI>.AEXPdd
And 1.1 is assigned to <ISUBSYSTEMI .AEXPcut
And 1.1 is assigned to ISUBSYSTEMI>.AEXPit
And 4ISUBSYSTEMI>.AEXP..rating is set to "Low"

102

RULE: Rule 79
If

ISUBSYSTEM.AEXP is "Betweenl..and_3-years"
Then ActionS4

is confirmed.
And 1.0 is assigned to <ISUBSYSTEMI>.AEXPpd
And 1.0 is assigned to <ISUBSYSTEMI>.AEXPdd
And 1.0 is assigned to <ISUBSYSTEMI>.AEXPcut
And 1.0 Is assigned to <iSUBSYSTEMI>.AEXPit
And <JSUBSYSTEMI.AXP-rating is set to 'Nominal

RULE: Rule 80
If

1SUBSYSTEM .AEXP is "Betwee n_3and_6_years"
Then Action85

is confirmed.
And 0.87 is assigned to <ISUBSYSTEMI>.AEXPpd
And 0.9 is assigned to <ISUBSYSTEMI>.AEXPdd
And 0.92 is assigned to <ISUBSYSTEMI>.AEXPcut
And 0.92 is assigned to <ISUBSYSTEMI>.AEXPit
And <ISUBSYSTEMI >,AEXP.rating is set to "High"

RULE: Rule 81
If

ISUBSYSTEMI.AEXP is "Greaterthan_6_years"
Then Action86

is confirmed.
And 0.75 is assigned to <ISUBSYSTEMI>.AEXPpd
And 0.8 is assigned to <ISUBSYSTEMI>.AEXPdd
And 0.85 is assigned to <ISUBSYSTEM1>.AEXPcut
And 0.83 is assigned to <ISUBSYSTEMI>.AEXPit
And <ISUBSYSTEMI>.AEXPrating is set to "Very-High"

RULE: Rule 82
If

ISUBSYSTEMI.MODP is "No-useof._MPPs"
Then Action87

is confirmed.
And 1.05 is assigned to <ISUBSYSTEMI>.MODPpd
And 1.1 is assigned to <ISUBSYSTEMI>.MODPdd
And 1.25 is assigned to <ISUBSYSTEMI>.MODPcut
And 1.5 is assigned to ISUBSYSTEMI>,MODPit
And <ISUBSYSTEMI.MODP.rating is set to "Very-low"

RULE: Rule 83
If

ISUBSYSTEMI.MODP is "Beginning.use.of.MPPs"
Then Action88

is confirmed.
And 1.0 is assigned to 4ISUBSYSTEMI.MODPpd
And 1.05 is assigned to <ISUBSYSTEMI.MODPdd

103

RULE: Rule 83 (cont.)
And 1.1 is assigned to <ISUBSYSTEMI> MODPcut
And 1.2 is assigned to <ISUBSYSTEMI>.MODPit
And <ISUBSYSTEMI>,MODP._rating is set to "Low"

RULE: Rule 84
if

ISUBSYSTEMI.MODP is "Reasonably.experienced-insome.MPP-use"
Then Action89

is confirmed.
And 1.0 is assigned to <ISUBSYSTEMI>.MODPpd
And 1.0 is assigned to <ISUBSYSTEMI>.MODPdd
And 1.0 is assigned to <ISUBSYSTEMI>.MODPcut
And 1.0 is assigned to <ISUBSYSTEMI >MODPit
And <ISUBSYSTEMI>,MODPrating is set to "Nominal"

RULE: Rule 85
If

ISUBSYSTEMI.MODP is "Reasonably-experiencedin most..MPPRuse"
Then Action9O

is confirmed.
And 1.0 is assigned to <iSUBSYSTEMI >.MODPpd
And 0.95 is assigned to <ISUBSYSTEMI>.MODPdd
And 0.9 is assigned to (ISUBSYSTEMI>.MODPcut
And 0.83 is assigned to <ISUBSYSTEMI>.MODPit
And <ISUBSYSTEMI>.MODP.rating is set to "High"

RULE: Rule 86
If

ISUBSYSTEMI MODP is "Routine-useoof..aILMPPs"
Then Action9l

is confirmed.
And 1.0 is assigned to <SUBSYSTEMI >.MODPpd
And 0.9 is assigned to <ISUBSYSTEMI>,MODPdd
And 0.8 is assigned to <ISUBSYSTEMI>.MODPcut
And 0.65 is assigned to <iSUBSYSTEMI>.MODPit
And <ISUBSYSTEMI >.MODP..ratin g is set to "Very-High"

RULE: Rule 87
If

ISUBSYSTEMI Tool is "Basic-microcomputer-tools"
Then Action92

is confirmed.
And 1.02 is assigned to <ISUBSYSTEMI>.TOOLpd
And 1.05 is assigned to <ISUBSYSTEMI>.TOOLdd
And 1.33 is assigned to <ISUBSYSTEMI>.TOOLcut
And 1.43 is assigned to <ISUBSYSTEMI>.TOOTit
And 4SUBSYSTEMW.Tool-xating is set to "Very-low"

104

RULE: Rule 88
If

ISUBSYSTEMI Tool is "Basic_ minicomputer-tools"
Then Action93

is confirmed.
And 1.0 is assigned to <1SUBSYSTEMI >.TOOLpd
And 1.05 is assigned to <ISUBSYSTEMI>.TOOLdd
And 1.1 is assigned to <ISUBSYSTEMI>.TOOLcut
And 1.2 is assigned to <ISUBSYSTEMI>.TOOLit
And l1SUBSYSTEMI>.TooLrating is set to Low"

RULE: Rule 89
If

ISUBSYSTEMI Tool is "Stron gminLor-basic._maxLcomputer-tools"
Then Action94

is confirmed
And 1.0 is assigned to <ISUBSYSTEMI).TOOLpd
And 1.0 is assigned to <ISUBSYSTEMI>.TOOLdd
And 1.0 is assigned to <ISUBSYSTEMI>.TOOLcut
And 1.0 is assigned to <ISUBSYSTEMI>.TOOLit
And <ISUBSYSTEMI>.MODPrating is set to "Nominal"

RULE: Rule 90
If

ISUBSYSTEMI.Tool is "Stron g-maxLcomputer-tools"
Then Action93

is confirmed.
And 0.98 is assigned to <ISUBSYSTEMI>.TOOLpd
And 0.95 is assigned to <ISUBSYSTEMI>,TOOLdd
And 0.9 is assigned to <iSUBSYSTEMI>.TOOLcut
And 0.83 is assigned to <ISUBSYSTEMI >.TOOLit
And <ISUBSYSTEMI>.TooLrating is set to "High"

RULE: Rule 91
If

ISUBSYSTEMI.Tool is "Advanced.maxLcomputer-tools"
Then Action%

is confirmed.
And 0.95 is assigned to <ISUBSYSTEMI >.TOOLpd
And 0.9 is assigned to <ISUBSYSTEMI>.TOOLdd
And 0.8 is assigned to <ISUBSYSTEMI>.TOOLcut
And 0.7 is assigned to <ISUBSYSTEMI >,TOOLit
And <ISUBSYSTEMI>.TooLrating is set to "Very-High"

RULE: Rule 92
If

ISUBSYSTEMI.Sced is "Severely-accelerated-developmenLschedule"
Then Action97

is confirmed.
And 1.1 is assigned to <ISUBSYSTEMI>.SCEDpd
And 1.25 is assigned to <ISUBSYSTEMI>.SCEDdd

105

RULE: Rule 92 (cont.)
And 1.25 is assigned to <ISUBSYSTEMI,.SCEDcut
And 1.25 is assigned to <ISUBSYSTEMI>.SCEDit
And <ISUBSYSTEM>.Sced.rating is set to "Very-Low"

RULE: Rule 93
If

ISUBSYSTEMI.Sced is "Accelerated-developmenLschedule"
Then Action98

is confirmed.
And 1.0 is assigned to <ISUBSYSTEMI>.SCEDpd
And 1.15 is assigned to <ISUBSYSTEMI>.SCEDdd
And 1.15 is assigned to <SUBSYSTEMI>.SCEDcut
And I. I is assigned to <ISUBSYSTEMI> SCEDit
And <iSUBYSTEMb.Sced-rating is set to "Low"

RULE: Rule 94
If

ISUBSYSTEMI.Sced is "Programmed-developmenLschedule"
Then Action99

is confirmed.
And 1.0 is assigned to <ISUBSYSTEM[>.SCEDpd
And 1.0 is assigned to <ISUBSYSTEMI>.SCEDdd
And 1.0 is assigned to <ISUBSYSTEMI>,SCEDcut
And 1.0 is assigned to <ISUBSYSTEMI >SCEDit
And <ISUBSYSTEMI>.Sced-rating is set to "Nominal"

RULE: Rule 95
If

there is evidence of ISUBSYSTEMI.Requirement
And there is evidence of IMODULEIRequirement

Then MODULERequirement
is confirmed.
And Reset IMODULEI.Modify
And Reset IMODULEIIEDSI
And Reset IMODULEI.EDSID
And Reset IMODULEI.EDSIC
And Reset IMODULEI.EDSII
And Reset IMODULEI.AAF

RULE: Rule 96
If

there is evidence of ISUBSYSTEMI Requirement
Then SUBSYSTEM.Requirement

is confirmed.
And n+ 1.0 is assigned to n
And Create Object 'SUBSYSTEM_'\n\ ISUBSYSTEMI

106

Bibliography

Allen. Maj Mary K. The Develonment of an Artificial Intelligence
System for Inventory Management. PhD thesis, Graduate School
of Ohio State University. Oak Brook IL: Council of Logistics
Management, 1989.

Boehm, Barry W. Software Engineering Economics. Englewood Cliffs
NJ: Prentice-Hall, 198 1.

Ferens, Daniel V. Defense System Software Project Management.
Wright-Patterson AFB OH: Air Force Institute of Technology,
School of Systems and Logistics, January 1990.

"Softcost 676, A Case Study for Software Cost Estimation.'
Class handout distributed in IMGT 676, Software Cost
Estimation. School of Systems and Logistics, Air Force Institute of
Technology, Wright-Patterson AFB OH, April 1990.

--- Class handout distributed in IMGT 676, Software Cost
Estimation. School of Systems and Logistics, Air Force Institute of
Technology, Wright-Patterson AFB OH, April 1990.

Goodson, Capt James L. and Ist Lt Greg Pshsnychniak. "Term Project
for Software Cost Estimation." Report for IMGT 676, Software
Cost Estimation. School of Systems and Logistics, Air Force
Institute of Technology (AU), Wright-Patterson AFB OH, May
1990.

Hazen, Capt Christopher M. How Can Air Force Civil Engineers Use
Expert Systems? MS thesis, AFIT/GEM/LSM/88S-9. School of
Systems and Logistics, Air Force Institute of Technology (AU),
Wright-Patterson AFB OH, September 1989 (AD-A201583).

Hicks, Richard and Ronald Lee. VP-Expertm for Business
Agglications. Oakland CA: Holden-Day, Inc., 1988.

Holt, Lt Col James R. "Knowledge Engineering Outline." Class lecture
in LOGM 592, Artificial Intelligence Applications for Managers, Air
Force Institute of Technology (AU), Wright-Patterson AFB OH,
March 1990.

107

-.- Class lecture in LOGM 592, Artificial Intelligence
Applications for Managers, Air Force Institute of Technology
(AU), Wright-Patterson AFB OH, March 1990.

McMurry, Capt Deanna L. and Capt Kenneth L. Nelson. "Software
Cost Estimating Case." Report for IMGT 676, Software Cost
Estimation. School of Systems and Logistics, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, May 1990.

Nexpert Object' Fundamentals. Neuron Data Inc., Palo Alto CA,
1989.

Nexpert- Partners, Service Catalog. Neuron Data Inc., Palo Alto CA,
1989.

Prerau, David S. "Selection of an Appropriate Domain for an Expert

System," The Al Magazine Summer, 1985, pp. 27-30.

Price S. Reference Manual. General Electric Company, Cherry Hill NJ:
1989.

Project Officer's Guide to Life Cycle Cost (LCC) Models. Office for
Computer Resources and Analysis, Deputy for Acquisition
Logistics, Los Angels AFB CA, August 1988.

Rasmsus, Daniel. "The Expert Is In," MacUser September, 1989,
pp.136-160.

SEER- System Evaluation and Estimation of Resources. SEER-
SEM User's Manual. Galorath Associates, Inc., Marina Del Rey CA,
1988.

Stepanek, Stephen J. Specification of Exert Systems (U). Volume IL
Exoert System Cost Accounting: Final Report. 15 November
1988. Contract F04701-88-C-003 1. El Segundo CA: Tecolote
Research, Inc, November 1988.

Valusek, Lt Col John R. Class lecture in OPR 620, Decision Support
Systems. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB OH, May 1990.

Waterman, Donald A. A Guide to Expert Systems. Reading MA:
Addison-Wesley Publishing Company, Inc., 1976.

108

Young, Lawrence F. Decision Suoport and Idea Processing Systems.
Dubuque IA: Wm. C. Brown Publishers, 1989.

109

VITA

Major James L. Goodson

graduated from high school and enlisted in the Air Force in 1967. After

attending technical school at Low ry AFB, , lorado, he was stationed at

U-tapao Royal Thai Air Base as a weapons technician. Thereafter, he was

assigned to two more tours in South East Asia, flying as a gunner on AC- 119

and AC-130 Gunships. In 1979, he graduated from Troy State University

with a Bachelor of Science degree in Psycho!ogy.

Major Goodson was commissioned through the Officer Training School at

Lackland AFB, Texas. He was then assigned to the Air Force Flight Test

Center at Edwards AFB, California, as Chief of Maintenance for the F- 16 Test

Force, with a follow on Job as Maintenance Supervisor for the Field

Maintenance Squadron. In 1983, he received a Masters of Science Degree in

Systems Management from the University of Southern California. Shortly

thereafter, he was assigned to Chanute AFB,. Ilinois as an instructor in the

Aircraft Maintenance Officer Course. While still at Chanute AFB, Maj Goodson

was assigned as Chief of the Aircraft Systems Division. In 1986, he was

assigned to Air Force Space Division at Los Angeles AFB, California, where he

was assigned as the Chief of the Logisti's Support Division for the Global

Positioning Satellite System (GPS). There, his responsibilities included

logistics management of the GPS ground segment and concurrently, the

logistics development for the Ground/Airborne Integrated Terminal of the

Nuclear Detonation Detecdion System.

110

Form Approved
REPORT DOCUMENTATION PAGE QM8 No. 0o40188

P- .oo r oudr r*s:fe tdnO ntorrma(o,o s estimarr'j to a.erage i -. , oer fesoorie. nc ud ng tpe ,;ne ,r n ~ t~c~tf searv-- ,; ' JtJ -c $I.,c5
garmefl,.c Ina ,n'M ,nlng "'e lata neeaed. 3no c .moel N ano .e-,,nq tne cotIlemton of ,ntormatcn Send ccmmrents recarain .h's nurden "timaze or inV 3tmer asoect,) t s
::lectan)t ntO" ~ cn. nc nq 5q,;ev~o'or -.oun t?' nti ~ f ou~e N Jngtcn ' eaaQuarters se-(.es. :-, I.:r t a l lto~nr :oeratporS ar'o rorr 125 ee,nr

Za~~ra ;,,te 2: ,4 t. in 20210 a to -0e Offlce It M nqe'r'r't anda qe Pller-omrx R" c, o-,ec!,0
7
04-0 I 3). Nm';c. C 0Z503.

1. AGENCY USE ONLY (Leave OlanK) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

September 1990 Master's Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

THE DEVELOPMENT OF AN EXPERT SYSTEM FOR SOFTWARE COST
ESTIMATION

6. AUTHOR(S)

James L. Goodson, Major, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology AFIT/GLM/LSM/90S-21
WPAFB OH 45433-6583

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING, MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/ AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited

13. ABSTRACT (MaxImumr200words) Software development has become an integral part of new
weapon system design as sophisticated computer operating and control systems have
proliferated. Concurrently, there has been an ever increasing requirement to
accurately forecast system development cost. Experts use complicated software cost
estimating tools which are difficult for novice analysts to use. Expert system
technology appears to be able to bridge this gap. Policymakers have been intrigued
by the potential offered bythe development of expert systems in today's weapon systems
for system support and development and operational utility. The primary objective of
this thesis was to gather expert knowledge in software cost estimation and integrate
it with a powerful analytical software cost estimation algorithm. A battery of
questions where given to the experts to elicit responses relative to their knowledge
in software cost estimation. Responses where integrated with algorithms with the
detailed COCOMO cost estimation model. The expert system designed in this research
provides software developers, program managers, and cost analysts an easy mechanism
for determining software development costs. It provides an intelligent preproccessor,
numeric algorithms and an intelligent post processor in one tool. The expert system
can help the novice make accurate estimates and speed the process for experts.
14. SUBJECT TERMS 15. NUMBER OF PAGES

Artificial Intelligence, Expert System, Software Cost 122
Es timation 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

NSN 7540-01-280-5500 Standara orr 298 (.Rev 2-89)
9-11 Ord by ANSI %to 139-18
196-102

